Skip to main content
Log in

Monitoring of Essential and Toxic Elements in Multivitamin/Mineral Effervescent Tablet Supplements and Safety Assessment

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Multivitamin/mineral (MVM) supplements are the most commonly utilized dietary supplements by many populations. However, there is a severe concern about their adverse effects due to elemental impurities. In the present study, it was aimed to determine the levels of 11 elemental impurities (Cd, Pb, As, Hg, Co, V, Ni, Se, Mo, Cu, and Cr) by inductively coupled plasma-mass spectrometry (ICP-MS) and evaluate the human health risk associated with the consumption of 33 MVM effervescent tablet supplements available in Turkey. The precision of the method in terms of relative standard deviation (RSD) was less than 4.6%. The accuracy of the method was tested with recovery experiments, and the results ranged between 86 and 107%. The impurity levels for Cd, Pb, As, Co, V, Ni, Se, Mo, Cu, and Cr were found between 0.011–0.050, 0.025–0.098, 0.018–0.056, 0.010–0.626, 0.027–0.290, 0.026–1.65, 1.92–21.83, 0.034–34.09, 0.140–183.9, and 0.033–13.10 µg/g, respectively, and Hg was not detected in any sample. The calculated concentrations for elemental impurities complied with EMA and USP guidelines, except one supplement for Se (21.83 µg/g) with a permitted limit of 15 µg/g. The hazard quotient (HQ) and hazard index (HI) levels were below 1 for all samples within the ranges of 3.4 × 10−1–1.4 × 10−6 for HQ and 7.8 × 10−1–1.4 × 10−6 for HI indicating that there is no risk for consumption. The carcinogenic risk (CR) of As was between 1.7 × 10−6 and 5.9 × 10−6, below the threshold value of 1 × 10−4. The results showed that there is no risk to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. National Institutes of Health (NIH), U.S. Department of Health & Human Services. Dietary supplement fact sheets, dietary supplements: what you need to know. https://ods.od.nih.gov/factsheets/WYNTK-Consumer/. Accessed 08 February 2024

  2. Food and Drug Administration (FDA), Dietary supplements. https://www.fda.gov/food/dietary-supplements/dietary-supplement-ingredient-directory. Accessed 07 November 2023

  3. Biesalski HK, Tinz J (2017) Multivitamin/mineral supplements: rationale and safety - a systematic review. Nutrition 33:76–82

    Article  CAS  PubMed  Google Scholar 

  4. Adams JB, Kirby J, Audhya T, Whiteley P, Bain J (2022) Vitamin/mineral/micronutrient supplement for autism spectrum disorders: a research survey. BMC Pediatr 22:590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arora I, White S, Mathews R (2023) Global dietary and herbal supplement use during COVID-19 - A scoping review. Nutrients 15:771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lange KW, Nakamura Y (2020) Lifestyle factors in the prevention of COVID-19. Glob Health J 4:146–152

    Article  PubMed  PubMed Central  Google Scholar 

  7. National Institutes of Health (NIH), U.S. Department of Health & Human Services. Dietary Supplements in the Time of COVID-19. https://ods.od.nih.gov/factsheets/COVID19-HealthProfessional/. Accessed 08 November 2023

  8. Speakman LL, Michienzi SM, Badowski ME (2021) Vitamins, supplements, and COVID-19: a review of currently available evidence. Drugs Context 10:6–2

    Article  Google Scholar 

  9. Ababneh FA (2023) Toxic elements in children’s multivitamin-multimineral supplements and the health risks they pose. Regul Toxicol Pharmacol 141:105409

    Article  CAS  PubMed  Google Scholar 

  10. Torovic L, Vojvodic S, Lukic D, Conic BS, Bijelovic S (2023) Safety assessment of herbal food supplements: elemental profiling and associated risk. Foods 12:2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. White CM (2022) Lead in mineral or multivitamin-multimineral products. Ann Pharmacother 56(3):339–345

    Article  PubMed  Google Scholar 

  12. Binns CW, Lee MK, Lee AH (2018) Problems and prospects: public health regulation of dietary supplements. Annu Rev Public Health 39:403–420

    Article  PubMed  Google Scholar 

  13. Ronis MJJ, Pedersen KB, Watt J (2018) Adverse effects of nutraceuticals and dietary supplements. Annu Rev Pharmacol Toxicol 58:583–601

    Article  CAS  PubMed  Google Scholar 

  14. Savlak N, Çağındı Ö, Dedeoğlu M, İnce C, Köse E (2022) An overview of the dietary supplements in Turkey and the world. GIDA 47(4):576–590

    Google Scholar 

  15. European Food Safety Authority (EFSA), Food supplements. https://www.efsa.europa.eu/en/topics/topic/food-supplements. Accessed 08 November 2023

  16. Moses G (2021) The safety of commonly used vitamins and minerals. Aust Prescr 44(4):119–123

    Article  PubMed  PubMed Central  Google Scholar 

  17. Canbolat F (2023) Analysis of non-carcinogenic health risk assessment of elemental impurities in vitamin C supplements. Iran J Basic Med Sci 26:216–227

    PubMed  PubMed Central  Google Scholar 

  18. European Medicines Agency (EMA) (2022) Committee for medicinal products for human use. ICH guideline Q3D (R2) on elemental impurities. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirementsregistration-pharmaceuticals-human-use-ich-q3d-elemental-impurities-step-5-revision-2_en.pdf. Accessed 08 Nov 2023

  19. Schwalfenberg G, Rodushkin I, Stephen JG (2018) Heavy metal contamination of prenatal vitamins. Toxicol Rep 5:390–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Korfali SI, Hawi T, Mroueh M (2013) Evaluation of heavy metals content in dietary supplements in Lebanon. Chem Cent J 7(1):1–13

    Article  Google Scholar 

  21. Poniedziałek B, Niedzielski P, Kozak L, Rzymski P, Wachelka M, Rzymska I et al (2018) Monitoring of essential and toxic elements in multi-ingredient food supplements produced in European Union. J Consum Prot Food Saf 13(1):41–48

    Article  Google Scholar 

  22. Udousoro I, Ikem A, Akinbo OT (2017) Content and daily intake of essential and potentially toxic elements from dietary supplements marketed in Nigeria. J Food Compos Anal 62:23–34

    Article  CAS  Google Scholar 

  23. United States Pharmacopeia (USP). <232> Elemental impurities-limits, 2020.

  24. United States Pharmacopeia (USP). <2232> Elemental contaminants in dietary supplements, 2023.

  25. The United States Environmental Protection Agency (US EPA), Reference Dose (RfD) description and use in health risk assessments. https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments. Accessed 10 November 2023

  26. The United States Environmental Protection Agency (US EPA). National Center for Environmental Assessment. Exposure factors handbook 2011 edition (final report), last updated 21 March 2022. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252. Accessed 14 February 2024

  27. Figueiredo A, Costa IM, Fernandes TA, Gonçalves LL, Brito J (2020) Food supplements for weight loss: risk assessment of selected impurities. Nutrients 12:1–11

    Article  Google Scholar 

  28. Ćwieląg-Drabek M, Piekut A, Szymala I, Oleksiuk K, Razzaghi M, Osmala W et al (2020) Health risks from consumption of medicinal plant dietary supplements. Food Sci Nutr 8:3535–3544

    Article  PubMed  PubMed Central  Google Scholar 

  29. Geronimo ACR, Melo ESP, Silva KRN, Pereira HS, Nascimento VA, Machate DJ et al (2021) Human health risk assessment of heavy metals and metalloids in herbal medicines used to treat anxiety: monitoring of safety. Front Pharmacol 12:1–12

    Article  Google Scholar 

  30. Rojas P, Ruiz-Sánchez E, Ríos C, Ruiz-Chow Á, Reséndiz-Albor AA (2021) A health risk assessment of lead and other metals in pharmaceutical herbal products and dietary supplements containing Ginkgo biloba in the Mexico city metropolitan area. Int J Environ Res Public Health 18:8285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng F, Wei W, Li M, Huang R, Yang F, Duan Y (2015) Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. Int J Environ Res Public Health 12:15584–15593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niknejad H, Ala A, Ahmadi F, Mahmoodi H, Saeedi R, Gholami-Borujeni F et al (2023) Carcinogenic and non-carcinogenic risk assessment of exposure to trace elements in groundwater resources of Sari city. Iran J Water Health 21(4):501–513

    Article  PubMed  Google Scholar 

  33. Li Q, Han Z, Tian Y, Xiao H, Yang M (2023) Risk assessment of heavy metal in farmlands and crops near Pb–Zn mine tailing ponds in Niujiaotang. China Toxics 11:106

    Article  CAS  PubMed  Google Scholar 

  34. Huerta D, Schobel T, Alexander-Ozinskas A, Hild J, Lauder J, Reynolds P et al (2023) Probabilistic risk assessment of residential exposure to metal(loid)s in a mining impacted community. Sci Total Environ 872:162228

    Article  ADS  CAS  PubMed  Google Scholar 

  35. The United States Environmental Protection Agency (US EPA). IRIS (Integrated Risk Information System) Assessments. https://iris.epa.gov/AtoZ/?list_type=alpha. Accessed 13 February 2024

  36. The United States Environmental Protection Agency (US EPA). Provisional peer-reviewed toxicity values (PPRTVs) assessments, last updated 1 August 2023. https://www.epa.gov/pprtv/provisional-peer-reviewed-toxicity-values-pprtvs-assessments. Accessed 14 February 2024

  37. The United States Environmental Protection Agency (US EPA). Regional screening levels (RSLs)-generic tables (subchronic toxicity values), last updated 11 December 2023. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. Accessed 14 February 2024

  38. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  39. Stuss M, Michalska-Kasiczak M, Sewerynek E (2017) The role of selenium in thyroid gland pathophysiology. Endokrynol Pol 68(4):440–454

    Article  CAS  PubMed  Google Scholar 

  40. Minnetti M, Sada V, Feola T, Giannetta E, Pozza C, Gianfrilli D et al (2022) Selenium supplementation in pregnant women with autoimmune thyroiditis: a practical approach. Nutrients 14:2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Larsen D, Singh S, Brito M (2022) Thyroid, diet, and alternative approaches. J Clin Endocrinol Metab 107:2973–2981

    Article  PubMed  Google Scholar 

  42. Dahlen CR, Reynolds LP, Caton JS (2022) Selenium supplementation and pregnancy outcomes. Front Nutr 9:1011850

    Article  PubMed  PubMed Central  Google Scholar 

  43. Steinbrenner H, Duntas LH, Rayman MP (2022) The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 50:102236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gorini F, Sabatino L, Pingitore A, Vassalle C (2021) Selenium: an element of life essential for thyroid function. Molecules 26:7084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. International Agency for Research on Cancer (IARC) (2023) List of classifications by cancer sites with sufficient or limited evidence in humans, IARC Monographs Volumes 1–135a. https://monographs.iarc.who.int/wp-content/uploads/2019/07/Classifications_by_cancer_site.pdf. Accessed 08 Nov 2023

  46. Al-Thani G, Ibrahim AE, Alomairi M, Salman BI, Hegazy MM, Al-Harrasi A et al (2023) Toxic elemental impurities in herbal weight loss supplements; a study using ICP-OES microwave-assisted digestion. Toxics 11:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arora NK, Chauhan R (2021) Heavy metal toxicity and sustainable interventions for their decontamination. Environ Sustain 4(1):1–3

    Article  CAS  Google Scholar 

  48. Brodziak-Dopierała B, Fischer A, Szczelina W, Stojko J (2018) The content of mercury in herbal dietary supplements. Biol Trace Elem Res 185:236–243

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zinn GM, Mizanur-Rahman GM, Faber S, Wolle MM, Pamuku M, Kingston HMS (2016) Evaluation of dietary supplement contamination by xenobiotic and essential elements using microwave-enhanced sample digestion and Inductively Coupled Plasma-Mass Spectrometry. J Diet Suppl 13(2):185–208

    Article  CAS  PubMed  Google Scholar 

  50. Augustsson A, Qvarforth A, Engstrom E, Paulukat C, Rodushkin I (2021) Trace and major elements in food supplements of different origin: implications for daily intake levels and health risks. Toxicol Rep 8:1067–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Avula B, Wang Y-H, Duzgoren-Aydin NS, Khan IA (2010) Inorganic elemental compositions of commercial multivitamin/mineral dietary supplements: application of collision/reaction cell inductively coupled-mass spectroscopy. Food Chem 127:54–62

    Article  Google Scholar 

  52. Jairoun AA, Shahwan M, Zyoud SH (2020) Heavy metal contamination of dietary supplements products available in the UAE markets and the associated risk. Sci Rep 10:18824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Valiente L, Piccinna M, Ale ER, Grillo A, Smichowski P (2002) Determination of selenium in dietary supplements by ETAAS and HG-AAS: a comparative study. At Spectrosc 23:129–134

    CAS  Google Scholar 

  54. Niedzielski P, Rudnicka M, Wachelka M, Kozak L, Rzany M, Wozniak M et al (2016) Selenium species in selenium fortified food supplements. Food Chem 190:454–459

    Article  CAS  PubMed  Google Scholar 

  55. Raab A, Stiboller M, Gajdosechova Z, Nelson J, Feldmann J (2016) Element content and daily intake from dietary supplements (nutraceuticals) based on algae, garlic, yeast fish and krill oils - should consumers be worried? J Food Compost Anal 53:49–60

    Article  CAS  Google Scholar 

  56. Leblond C, Mephara J, Sauvé S (2008) Trace metals (Cd Co, Cr, Cu, Hg, Ni, Pb, and Zn) in food supplements of marine origin. Hum Ecol Risk Assess 14(2):408–420

    Article  CAS  Google Scholar 

  57. Garcia-Rico L, Leyva-Perez J, Jara-Marini ME (2007) Content and daily intake of copper, zinc, lead, cadmium, and mercury from dietary supplements in Mexico. Food Chem Toxicol 45:1599–1605

    Article  CAS  PubMed  Google Scholar 

  58. Choi MK, Park ES, Kim MH (2018) Evaluation of mineral contents of multi-vitamin and minerals currently sold in South Korea. Clin Nutr Res 7(4):248–255

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gabriels G, Lambert MI (2013) Nutritional supplement products: does the label information influence purchasing decisions for the physically active? Nutr J 12:133–140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. O.K. and I.U. prepared the materials and performed the analysis. I.U. collected the data and performed the evaluation. B.K. and O.A. supervised the study. I.U. wrote the main manuscript and all authors reviewed the manuscript.

Corresponding author

Correspondence to İrem Uslu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uslu, İ., Alp, O. & Karahalil, B. Monitoring of Essential and Toxic Elements in Multivitamin/Mineral Effervescent Tablet Supplements and Safety Assessment. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04138-z

Keywords

Navigation