Skip to main content
Log in

Copper Promotes LPS-Induced Inflammation via the NF-кB Pathway in Bovine Macrophages

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Inflammation is a complex physiological process that enables the clearance of pathogens and repairing damaged tissues. Elevated serum copper concentration has been reported in cases of inflammation, but the role of copper in inflammatory responses remains unclear. This study used bovine macrophages to establish lipopolysaccharide (LPS)-induced inflammation model. There were five groups in the study: a group treated with LPS (100 ng/ml), a group treated with either copper chelator (tetrathiomolybdate, TTM) (20 μmol) or CuSO4 (25 μmol or 50 μmol) after LPS stimulation, and a control group. Copper concentrations increased in macrophages after the LPS treatment. TTM decreased mRNA expression of pro-inflammatory factors (IL-1β, TNF-α, IL-6, iNOS, and COX-2), whereas copper supplement increased them. Compared to the control group, TLP4 and MyD88 protein levels were increased in the TTM and copper groups. However, TTM treatment decreased p-p65 and increased IкB-α while the copper supplement showed reversed results. In addition, the phagocytosis and migration of bovine macrophages decreased in the TTM treatment group while increased in the copper treatment groups. Results mentioned above indicated that copper could promote the LPS-induced inflammatory response in bovine macrophages, promote pro-inflammatory factors by activating the NF-кB pathway, and increase phagocytosis capacity and migration. Our study provides a possible targeted therapy for bovine inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Deng H, Zhu S, Yang H, Cui H, Guo H, Deng J et al (2022) The dysregulation of inflammatory pathways triggered by copper exposure. Biol Trace Elem Res 201:539–548

    Article  PubMed  Google Scholar 

  2. Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB (2019) Inflammation and cancer. Ann Afr Med 18:121–126

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oishi Y, Manabe I (2018) Macrophages in inflammation, repair and regeneration. Int Immunol 30:511–528

    Article  CAS  PubMed  Google Scholar 

  4. Urbanowicz T, Hanć A, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Michalak M et al (2022) Serum copper concentration reflect inflammatory activation in the complex coronary artery disease—a pilot study. J Trace Elem Med Biol 74:127064

    Article  CAS  PubMed  Google Scholar 

  5. Amerikanou C, Valsamidou E, Karavoltsos S, Tagkouli D, Sakellari A, Kontou M et al (2023) Circulating copper is associated with inflammatory biomarkers in Greek older adults with osteoarthritis. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03801-1

    Article  PubMed  Google Scholar 

  6. Kong R, Sun G (2023) Targeting copper metabolism: a promising strategy for cancer treatment. Front Pharmacol 14:1203447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Solomon EI (2006) Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. Inorg Chem 45:8012–8025

    Article  CAS  PubMed  Google Scholar 

  9. MacMaster MJ, Damianopoulou S, Thomson C, Talwar D, Stefanowicz F, Catchpole A et al (2021) A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin Nutr 40:327–331

    Article  CAS  PubMed  Google Scholar 

  10. Rashmi R, Yuti AM, Basavaraj KH (2010) Relevance of copper and ceruloplasmin in psoriasis. Clin Chim Acta 411:1390–1392

    Article  CAS  PubMed  Google Scholar 

  11. Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F et al (2023) A druggable copper-signalling pathway that drives inflammation. Nature 617:386–394

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pompilio A, Ciavardelli D, Crocetta V, Consalvo A, Zappacosta R, Di Ilio C et al (2014) Stenotrophomonas maltophilia virulence and specific variations in trace elements during acute lung infection: implications in cystic fibrosis. PLoS ONE 9:e88769

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Tallino S, Duffy M, Ralle M, Cortés MP, Latorre M, Burkhead JL (2015) Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem 26:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ogen-Shtern N, Chumin K, Silberstein E, Borkow G (2021) Copper ions ameliorated thermal burn-induced damage in ex vivo human skin organ culture. Skin Pharmacol Physiol 34:317–327

    Article  CAS  PubMed  Google Scholar 

  15. Omoto A, Kawahito Y, Prudovsky I, Tubouchi Y, Kimura M, Ishino H et al (2005) Copper chelation with tetrathiomolybdate suppresses adjuvant-induced arthritis and inflammation-associated cachexia in rats. Arthritis Res Ther 7:R1174–R1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei H, Zhang WJ, Leboeuf R, Frei B (2014) Copper induces—and copper chelation by tetrathiomolybdate inhibits—endothelial activation in vitro. Redox Rep 19:40–48

    Article  CAS  PubMed  Google Scholar 

  17. Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X (2023) Copper metabolism in cell death and autophagy. Autophagy 19:2175–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deigendesch N, Zychlinsky A, Meissner F (2018) Copper regulates the canonical NLRP3 inflammasome. J Immunol 200:1607–1617

    Article  CAS  PubMed  Google Scholar 

  19. Stremmel W (2019) Bis-choline tetrathiomolybdate as old drug in a new design for Wilson’s disease: good for brain and liver? Hepatology 69:901–903

    Article  PubMed  Google Scholar 

  20. Kendall NR, Marsters P, Guo L, Scaramuzzi RJ, Campbell BK (2006) Effect of copper and thiomolybdates on bovine theca cell differentiation in vitro. J Endocrinol 189:455–463

    Article  CAS  PubMed  Google Scholar 

  21. Kendall NR, Marsters P, Scaramuzzi RJ, Campbell BK (2003) Expression of lysyl oxidase and effect of copper chloride and ammonium tetrathiomolybdate on bovine ovarian follicle granulosa cells cultured in serum-free media. Reproduction 125:657–665

    Article  CAS  PubMed  Google Scholar 

  22. Suttle NF (2013) Rates of change in liver copper concentration in cattle given a copper-deficient diet, with or without pre-treatment with tetrathiomolybdate, for evaluation of two parenteral copper supplements. N Z Vet J 61:154–158

    Article  CAS  PubMed  Google Scholar 

  23. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G et al (2020) Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun 11:900

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440

    Article  CAS  PubMed  Google Scholar 

  25. Wei H, Frei B, Beckman JS, Zhang WJ (2011) Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo. Am J Physiol Heart Circ Physiol 301:H712–H720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A (2023) Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 23:563–579

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Project (2022YFD1601600), the China Agriculture Research System of MOF and MARA (Beef Cattle/Yak, CARS-37), and the Innovative Team for Beef Cattle Low-Carbon Production (2022–2024).

Author information

Authors and Affiliations

Authors

Contributions

Hongrui Guo: Methodology, Investigation, Formal analysis, Writing-Original Draft, Funding acquisition. Lin Jing: Methodology, Investigation, Formal analysis, Writing-Original Draft. Yanqiu Zhu: Methodology. Chenglong Xia: Methodology. Yue Xie: Methodology. Xiaoping Ma: Methodology. Jing Fang: Methodology. Zhisheng Wang: Methodology, Supervision, Project administration. Zhicai Zuo: Conceptualization, Experiment design, Writing–review & editing, Funding acquisition.

Corresponding authors

Correspondence to Hongrui Guo or Zhicai Zuo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

All procedures related to animals were conducted in accordance with the guidelines of the Animal Care and the Ethics Committee of Sichuan Agricultural University (Approval No: 2012–024, Chengdu, China).

Consent for Publication

All the authors have consented for the publication of this research.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Jing, L., Xia, C. et al. Copper Promotes LPS-Induced Inflammation via the NF-кB Pathway in Bovine Macrophages. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04107-6

Keywords

Navigation