Skip to main content
Log in

Iodine Intake and its Interindividual Variability in Brazilian Pregnant Women: EMDI Brazil Study

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Data on pregnant women’s iodine intake are limited in Brazil. The aim of the study was to evaluate the contribution of foods, food groups, and food subgroups to the Brazilian pregnant women’s iodine intake, and identify which food items explain the interindividual variability of their intake. A cross-sectional study with food consumption data of 2247 pregnant women from 24-h recalls was developed. Food items were classified according to the FAO/WHO GIFT classification, and their contribution to iodine intake and interindividual variability was assessed by the proportion of means method and linear regression, respectively. The mean usual iodine intake was 163.1 mcg (95% CI: 162.9–163.2). The food groups “spices and condiments,” “cereals and their products,” and “milk and milk products”; and the food subgroups “herbs and spices,” “wheat and wheat-based products,” “milk: fresh and processed,” “dough-based sweets,” and “eggs: fresh and processed” contributed to at least 80% of the iodine intake. Of these, only the food subgroups “milk,” “dough-based sweets,” and “eggs” did not explain the higher proportion (> 80%) of the interindividual variability. The contribution of “salt,” “white French bread,” “fluid whole milk,” and “rice” to the iodine intake and its interindividual variability is highlighted. This study confirms the importance of “salt” as a dietary source of iodine and that few food groups and subgroups explained the difference in the iodine intake among pregnant women. Despite that, Brazilian staple foods, such as “rice,” “beans,” “eggs,” “milk,” and “bread” were identified as important for iodine intake and could be included in nutritional guidelines targeted to Brazilian pregnant women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated and analyzed in this study are not publicly available due to ethical aspects defined by the Ethics Committee for Research with Human Beings of the Universidade Federal de Viçosa. These data can be obtained upon reasonable request from the corresponding author.

References

  1. Bouga M, Lean MEJ, Combet E (2018) Iodine and pregnancy—a qualitative study focusing on dietary guidance and information. Nutrients 10:408. https://doi.org/10.3390/nu10040408

    Article  PubMed  PubMed Central  Google Scholar 

  2. Doyle I, Borrmann B, Grosser A et al (2017) Determinants of dietary patterns and diet quality during pregnancy: a systematic review with narrative synthesis. Public Health Nutr 20:1009–1028. https://doi.org/10.1017/S1368980016002937

    Article  PubMed  Google Scholar 

  3. Fuge R, Johnson CC (2015) Iodine and human health, the role of environmental geochemistry and diet, a review. Appl Geochem 63:282–302. https://doi.org/10.1016/j.apgeochem.2015.09.013

    Article  CAS  Google Scholar 

  4. Krela-Kaźmierczak I, Czarnywojtek A, Skoracka K et al (2021) Is there an ideal diet to protect against iodine deficiency? Nutrients 13:513. https://doi.org/10.3390/nu13020513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rohner F, Zimmermann M, Jooste P et al (2014) Biomarkers of nutrition for development—iodine review. J Nutr 144:1322S-1342S. https://doi.org/10.3945/jn.113.181974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wainwright P, Cook P (2019) The assessment of iodine status—populations, individuals and limitations. Ann Clin Biochem: Int J Lab Med 56:7–14. https://doi.org/10.1177/0004563218774816

    Article  CAS  Google Scholar 

  7. World Health Organization (WHO) (2007) Assessment of the iodine deficiency disorders and monitoring their elimination. WHO, Geneva, pp 1–107. https://www.who.int/publications/i/item/9789241595827. Accessed 20 July 2019

  8. Juan WY, Trumbo PR, Spungen JH et al (2016) Comparison of 2 methods for estimating the prevalences of inadequate and excessive iodine intakes. Am J Clin Nutr 104:888S-897S. https://doi.org/10.3945/ajcn.115.110346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Willett W (2013) Nutritional epidemiology, 3rd edn. Oxford University Press, New York

  10. da Rocha Mariano K, Andrade GC, Louzada MLC et al (2023) Ultra-processed foods and the nutritional quality of the diet of Brazilian pregnant women. Rev Assoc Med Bras 69:169–174. https://doi.org/10.1590/1806-9282.20221230

    Article  Google Scholar 

  11. Gomes CB, Malta MB, Papini SJ et al (2019) Adherence to dietary patterns during pregnancy and association with maternal characteristics in pregnant Brazilian women. Nutrition 62:85–92. https://doi.org/10.1016/j.nut.2018.10.036

    Article  PubMed  Google Scholar 

  12. Miele MJ, Souza RT, Calderon IM et al (2021) The food patterns of a multicenter cohort of Brazilian nulliparous pregnant women. Sci Rep 11:15554. https://doi.org/10.1038/s41598-021-95185-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. dos Santos Q, Sichieri R, Marchioni DM, Verly Junior E (2014) Brazilian pregnant and lactating women do not change their food intake to meet nutritional goals. BMC Pregnancy Childbirth 14:186. https://doi.org/10.1186/1471-2393-14-186

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sociedade Brasileira de Endocrinologia e Metabologia (SBEM) (2018) O panorama do estado nutricional de iodo no Brasil. https://www.sbemsp.org.br/para-o-publico/noticias/194-o-panorama-do-estado-nutricional-de-iodo-no-brasil. Accessed 23 Sept 2020

  15. Brasil. Ministério da Saúde (2007) Cadernos de Atenção Básica: Carência de Micronutrientes. https://bvsms.saude.gov.br/bvs/publicacoes/cadernos_atencao_basica_carencias_micronutrientes.pdf. Accessed 21 Sept 2020

  16. Brasil. Ministério da Saúde (2013) Resolução da Diretoria Colegiada nº 23, de 24 de Abril de 2013. Diário Oficial da União 1. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2013/res0023_23_04_2013.html. Accessed 20 Apr 2019

  17. Iodine Global Network (IGN) (2021) Annual Report – 2021. https://www.ign.org/reports.htm. Accessed 10 July 2022

  18. Cesar JA, Santos IS, Black RE et al (2020) Iodine status of Brazilian school-age children: a national cross-sectional survey. Nutrients 12:1077. https://doi.org/10.3390/nu12041077

    Article  CAS  Google Scholar 

  19. de Souza Macedo M (2017) Estado Nutricional de Iodo Materno Durante Gestação e Lactação e Sua Relação com Deficiência de Iodo em Recém-Nascidos e Lactentes no Município de Diamantina – MG. Dissertation, Faculdade de Medicina da Universidade Federal de Minas Gerais. https://repositorio.ufmg.br/handle/1843/BUOS-B56G47. Accessed 10 Aug 2019

  20. Agência Nacional de Vigilância Sanitária (Anvisa) (2020) Relatório do Monitoramento do Teor de Iodo no Sal Destinado a Consumo Humano. Brasília. https://www.gov.br/anvisa/pt-br/assuntos/fiscalizacao-e-monitoramento/programas-nacionais-de-monitoramento-de-alimentos/iodacao-do-sal-para-consumo-humano. Accessed 7 June 2021

  21. World Health Organization (WHO) (2013) Salt reduction and iodine fortification strategies in public health. https://www.who.int/publications-detail-redirect/978924150669. Accessed 15 Mar 2021

  22. do Franceschini SC, de Macedo MS (2022) Estado Nutricional de iodo entre gestantes, nutrizes e lactentes brasileiros: um Estudo Multicêntrico. https://emdibrasil.com.br/. Accessed 20 Apr 2019

  23. Battisti I (2008) Análise de dados epidemiológicos incorporando planos amostrais complexos. Dissertation, Universidade Federal do Rio Grande do Sul. https://lume.ufrgs.br/handle/10183/14675. Accessed 15 June 2018

  24. Borges RB, Mancuso ACB, Camey SA et al (2021) Power and sample size for health researchers: a tool for calculating sample size and statistical power designed for health researchers. Clin Biomed Res 40:247–253. https://doi.org/10.22491/2357-9730.109542

    Article  Google Scholar 

  25. Patridge EF, Bardyn TP (2018) Research Electronic Data Capture (REDCap). J Med Libr Assoc 106:142–144. https://doi.org/10.5195/jmla.2018.319

    Article  PubMed Central  Google Scholar 

  26. Instituto Adolfo Lutz (IAL) (1985) Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos Para Análise de Alimentos, 3rd edn. IMESP, São Paulo, Brazil

  27. American Public Health Association (2005) Standard methods for the examination of water and wastewater, vol 21. American Public Health Association, Washington, DC

  28. Moshfegh AJ, Rhodes DG, Baer DJ et al (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr 88:324–332. https://doi.org/10.1093/ajcn/88.2.324

    Article  CAS  PubMed  Google Scholar 

  29. Crispim SP, Fisberg RM, Almeida CCB et al (2017) Manual Fotográfico de Quantificação Alimentar, 1st ed. Universidade Federal do Paraná, Curitiba, Paraná, Brazil. https://www.dropbox.com/s/n25bpsawn6m12wq/ALBUM%20quantifica%C3%A7%C3%A3o%20alimentar.pdf?dl=0. Accessed 13 July 2018

  30. Bel-Serrat S, Knaze V, Nicolas G et al (2017) Adapting the standardised computer- and interview-based 24 h dietary recall method (GloboDiet) for dietary monitoring in Latin America. Public Health Nutr 20:2847–2858. https://doi.org/10.1017/S1368980017001872

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Miranda Milagres RCR, de Souza ECG, do Carmo Gouveia Peluzio M et al (2020) Food iodine content table compiled from international databases. Rev Nutr 33:1–12. https://doi.org/10.1590/1678-9865202033e190222

    Article  CAS  Google Scholar 

  32. Universidade de São Paulo (USP) (2020) Brazilian food composition table. http://www.tbca.net.br/. Accessed 2 Oct 2020

  33. Stadlmayr B, Wijesinha-Bettoni R, Haytowitz DB et al (2011) INFOODS guidelines for food matching. www.fao.org/infoods/INFOODSGuidelinesforFoodMatchingfinal.pdf. Accessed 2 Oct 2020

  34. Food Standards Australia & New Zealand (2013) Australian Food, Supplement and Nutrient Database. https://www.foodstandards.gov.au/science/monitoringnutrients/afcd/pages/default.aspx. Accessed 2 Oct 2020

  35. National Institute for Public Health and the Environment (2019) Nederlands Voedingsstoffenbestand (NEVO). https://www.rivm.nl/nederlands-voedingsstoffenbestand. Accessed 2 Oct 2020

  36. Norwegian Food Safety Authority (2019) Norwegian food composition database. https://www.matvaretabellen.no/?language=en. Accessed 2 Oct 2020

  37. Federal Department of Home Affairs (2019) The Swiss Food Composition Database. Federal Food Safety and Veterinary Office. https://naehrwertdaten.ch/en/downloads/. Accessed 2 Oct 2020

  38. Agency for Food, Environmental and Occupational Health & Safety (ANSES) (2019) Ciqual French Food Composition Table. https://www.anses.fr/en/content/table-nutritional-composition-foods-ciqual-anses-supplements-its-data-and-publishes-its-wo-0. Accessed 2 Oct 2020

  39. Ministry of Education CSS and T (2015) Standards tables of foods composition in Japan. https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.htm. Accessed 2 Oct 2020

  40. Food and Agriculture Organization of the United Nations (FAO), World Health Organization (2021) Global individual food consumption data tool. http://www.fao.org/gift-individual-food-consumption/methodology/food-groups-and-sub-groups/en/. Accessed 15 Nov 2020

  41. Luo H, Dodd KW, Arnold CD, Engle-Stone R (2021) Introduction to the SIMPLE Macro, a tool to increase the accessibility of 24-hour dietary recall analysis and modeling. J Nutr 151:1329–1340. https://doi.org/10.1093/jn/nxaa440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krebs-Smith SM, Kott PS, Guenther PM (1989) Mean proportion and population proportion: two answers to the same question? J Am Diet Assoc 89:671–676

    Article  CAS  PubMed  Google Scholar 

  43. Kang M, Shim JE, Kwon K, Song S (2019) Contribution of foods to absolute nutrient intake and between-person variations of nutrient intake in Korean preschoolers. Nutr Res Pract 13:323–332. https://doi.org/10.4162/nrp.2019.13.4.323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Molag ML, de Vries JHM, Duif N et al (2010) Selecting informative food items for compiling food-frequency questionnaires: comparison of procedures. Br J Nutr 104:446–456. https://doi.org/10.1017/S0007114510000401

    Article  CAS  PubMed  Google Scholar 

  45. Goldberg GR, Black AE, Jebb SA et al (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45:569–581

    CAS  PubMed  Google Scholar 

  46. Schofield WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39(Suppl 1):5–41

    PubMed  Google Scholar 

  47. United Nations University, World Health Organization, Food and Agriculture Organization of The United Nations (2004) Human energy requirements: report of a joint FAO/WHO/UNU expert consultation. Rome. https://www.fao.org/3/y5686e/y5686e00.htm. Accessed 18 Dec 2020

  48. Prentice AM, Spaaij CJ, Goldberg GR et al (1996) Energy requirements of pregnant and lactating women. Eur J Clin Nutr 50(Suppl 1):S82–110

    PubMed  Google Scholar 

  49. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica (2008) Manual Técnico e Operacional do Pró-Iodo: Programa Nacional para a Prevenção e Controle dos Distúrbios por Deficiência de Iodo. https://bvsms.saude.gov.br/bvs/publicacoes/manual_tecnico_operacional_proiodo.pdf. Accessed 20 Apr 2019

  50. Viana FM, Deliza R, Monteiro MLG et al (2021) Applying free word association to understand the perception of fish as a meal by Brazilians with different consumption frequencies. J Sens Stud 36:e12628. https://doi.org/10.1111/joss.12628

    Article  Google Scholar 

  51. da Silva Assunção de Castro R, Giatti L, Barreto SM (2014) Factors associated with the addition of salt to prepared food. Cien Saude Colet 19:1503–1512. https://doi.org/10.1590/1413-81232014195.13212013

    Article  Google Scholar 

  52. Instituto Brasileiro de Geografia e Estatística (IBGE) (2020) Pesquisa de Orçamentos Familiares 2017- 2018 - Análise do Consumo alimentar Pessoal no Brasil. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101742.pdf. Accessed 22 July 2022

  53. Sichieri R (2021) Importance of national data on food consumption and changes in the diet of Brazilians from 2008 to 2018. Rev Saude Publica 55:1–4. https://doi.org/10.11606/s1518-8787.2021055supl1ap

    Article  Google Scholar 

  54. Rodrigues RM, de Moura Souza A, Bezerra IN et al (2021) Most consumed foods in Brazil: evolution between 2008–2009 and 2017–2018. Rev Saude Publica 55:1–10. https://doi.org/10.11606/s1518-8787.2021055003406

    Article  Google Scholar 

  55. de Souza LSL, de Oliveira Campos R, dos Santos Alves V et al (2020) Hypertension and salt-restrictive diet promotes low urinary iodine concentration in high-risk pregnant women: results from a cross-sectional study conducted after salt iodination reduction in Brazil. Biol Trace Elem Res 197:445–453. https://doi.org/10.1007/s12011-020-02028-8

    Article  CAS  Google Scholar 

  56. Pinto CA, de Castro Morais D, do Carmo Castro Franceschini S et al (2022) Iodine concentration in drinking water in the same or different seasons of the year in Brazilian Macroregions. J Nutr Metab 2022:1–5. https://doi.org/10.1155/2022/7227511

    Article  CAS  Google Scholar 

  57. Instituto Brasileiro de Geografia e Estatística (IBGE) (2022) Divisão Regional do Brasil. https://www.ibge.gov.br/geociencias/organizacao-do-territorio/divisao-regional/15778-divisoes-regionais-do-brasil.html?=&t=o-que-e. Accessed 6 Dec 2022

  58. Instituto Brasileiro de Geografia e Estatística (IBGE) (2022) Sistema IBGE de Recuperação Automática (SIDRA). https://sidra.ibge.gov.br/. Accessed 19 Dec 2022

  59. de Cássia Ribeiro-Silva R, Pereira M, Campello T et al (2020) Covid-19 pandemic implications for food and nutrition security in Brazil. Cien Saude Colet 25:3421–3430. https://doi.org/10.1590/1413-81232020259.22152020

    Article  Google Scholar 

  60. Departamento Intersindical de Estatística e Estudos Socioeconômicos (DIEESE) (2021) Pesquisa nacional da cesta básica de alimentos. São Paulo. https://www.dieese.org.br/analisecestabasica/analiseCestaBasica202101.html. Accessed 16 Nov 2022

  61. Rede Brasileira de Pesquisa em Soberania e Segurança Alimentar e Nutricional (Rede PENSSAN) (2022) National Survey of Food Insecurity in the Context of the Covid-19 Pandemic in Brazil. São Paulo. http://olheparaafome.com.br/VIGISAN_AF_National_Survey_of_Food_Insecurity.pdf. Accessed 20 Nov 2022

  62. Silva Araújo D, Almeida de Sousa I, Paes JMDC et al (2020) Attention to women’s health in prenatal and puerperium in times of COVID-19: a descriptive review. Res, Soc Dev 9:e944997644. https://doi.org/10.33448/rsd-v9i9.7644

    Article  Google Scholar 

  63. Instituto Brasileiro de Geografia e Estatística (IBGE) (2019) Pesquisa nacional de saúde: Ciclos da vida. Rio de Janeiro. https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101846. Accessed 1 July 2022.

Download references

Acknowledgements

The authors would like to thank the pregnant women, the Municipal Health Departments and the Multicenter Study of Iodine Deficiency (EMDI–Brazil) local coordinators for their participation, collaboration, and assistance in this research, as well as the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the scholarship (Brazil (CAPES)–finance code 001).

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant number 408295/20171); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig) (grant number APQ-03336–18); and Universidade Federal do Paraná (UFPR) (grant number 23075.057370/2020–01). CNPq, Fapemig, and UFPR had no role in the design, analysis or writing of this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.L.F.S., S.P.C., J.F. de N., C.A. de C., D.G. da S., E.A.F.F., M.de S.M., and S. do C.C.F.; methodology, D.L.F.S., S.P.C.; software, D.L.F.S., S.P.C.; formal analysis, D.L.F.S., S.P.C.; investigation, D.L.F.S., S.P.C.; Resources, S. DO C.C.F., S.P.C.; data curation, D.L.F.S., S.P.C., G.B.S., F.M.A., M. de S.M.; writing—original draft preparation, D.L.F.S.; writing—review and editing, S.P.C., G.B.S., F.M.A., J.F. de N., C.A. de C., D.G. da S., E.A.F.F., M. de S.M., S. do C.C.F.; visualization, D.L.F.S.; supervision, S.P.C., C.A. de C., D.G. da S., E.A.F.F., M. de S.M., S. do C.C.F.; project administration, M. de S.M. and S. do C.C.F.; funding acquisition, S.P.C., M. de S.M., S. do C.C.F. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Débora Letícia Frizzi Silva.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Universidade Federal de Viçosa (UFV) (18 February 2018/protocol code 2.496.986).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.L.F., Crispim, S.P., Silva, G.B. et al. Iodine Intake and its Interindividual Variability in Brazilian Pregnant Women: EMDI Brazil Study. Biol Trace Elem Res 202, 3025–3036 (2024). https://doi.org/10.1007/s12011-023-03909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03909-4

Keywords

Navigation