Skip to main content
Log in

Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress and inflammation have pivotal roles in gastric ulcer development caused by alcohol consumption. Trace element boric acid taken into the human and animal body from dietary sources displays strong antioxidant and anti-inflammatory functions. However, the mechanisms underlying these actions of boric acid remain unclear, and its effectiveness in preventing gastric lesions is unknown. Therefore, the present study was undertaken to evaluate the protective effects of boric acid in alcohol-induced gastric ulcer and elucidate its potential mechanisms. Gastric ulcer was induced by 75% oral ethanol administration in rats, and the effectiveness of prophylactic boric acid treatment at 100 mg/kg concentration was assessed by histopathological examination, ELISA assay and qRT-PCR. Gross macroscopic and histopathological evaluations revealed that boric acid alleviated gastric mucosal lesions. Boric acid decreased reactive oxygen species (ROS) and malondialdehyde (MDA) concentration and the overall oxidation state of the body while improving antioxidant status. It reduced the concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mRNA expression of JAK2 and STAT3 was decreased while the expression of AMPK was increased with boric acid pretreatment. Moreover, Sema3A and PlexinA1 levels were elevated upon boric acid pretreatment, and homocysteine levels were reduced. Our results demonstrated that boric acid protects gastric mucosa from ethanol-induced damage by regulating oxidative and inflammatory responses. In addition, our findings suggested that the gastroprotective activity of boric acid could be attributed to its regulatory function in the IL-6/JAK2/STAT3 signaling modulated by AMPK and that Sema3A/PlxnA1 axis and homocysteine are potentially involved in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Adi SD, Eiza N, Bejar J, Shefer H, Toledano S, Kessler O, Neufeld G, Toubi E, Vadasz Z (2019) Semaphorin 3A is effective in reducing both inflammation and angiogenesis in a mouse model of bronchial asthma. Front Immunol 10:550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94(2):329–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bondia-Pons I, Ryan L, Martinez JA (2012) Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem 68:701–711

    Article  CAS  PubMed  Google Scholar 

  4. Cao J, Jiang L, Zhang X, Yao X, Geng C, Xue X, Zhong L (2008) Boric acid inhibits LPS-induced TNF-α formation through a thiol-dependent mechanism in THP-1 cells. J Trace Elem Med Biol 22(3):189–195

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G, Zhang X (2017) Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 14:1–12

    Article  Google Scholar 

  6. Çakır Gündoğdu A, Kar F, Özbayer C (2022) Investigation of the gastroprotective effect of betaine-homocysteine homeostasis on oxidative stress, inflammation and apoptosis in ethanol-induced ulcer model. J Invest Surg 35(11–12):1806–1817

    Article  PubMed  Google Scholar 

  7. Dekanski D, Janićijević-Hudomal S, Ristić S, Radonjić NV, Petronijević ND, Piperski V, Mitrović DM (2009) Attenuation of cold restraint stress-induced gastric lesions by an olive leaf extract. Gen Physiol Biophys 28:135–142

    PubMed  Google Scholar 

  8. El-Ghannam MS, Saad MA, Nassar NN, El-Yamany MF, El-Bahy AA (2022) Linagliptin ameliorates acetic acid-induced colitis via modulating AMPK/SIRT1/PGC-1α and JAK2/STAT3 signaling pathway in rats. Toxicol Appl Pharmacol 438:115906

    Article  CAS  PubMed  Google Scholar 

  9. Gao Z, Yu C, Liang H, Wang X, Liu Y, Li X, Ji K, Xu H, Yang M, Liu K, Qi D, Fan H (2018) Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: involvement of NF-κB and MAPK signalling pathways. Int Immunopharmacol 57:82–90

    Article  CAS  PubMed  Google Scholar 

  10. Huang B, Zhang Q, Yuan Y, Xin N, He K, Huang Y, Tang H, Gong P (2018) Sema3a inhibits the differentiation of Raw264. 7 cells to osteoclasts under 2Gy radiation by reducing inflammation. PLoS One 13(7):e0200000

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hunt CD (2003) Dietary boron: an overview of the evidence for its role in immune function. J Trace Elem Exp Med: Off Publ Int Soc Trace Elem Res Humans 16(4):291–306

    Article  CAS  Google Scholar 

  12. Ince S, Kucukkurt I, Cigerci IH, Fidan AF, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24(3):161–164

    Article  CAS  PubMed  Google Scholar 

  13. Indran M, Mahmood AA, Kuppusamy UR (2008) Protective effect of Carica papaya L leaf extract against alcohol induced acute gastric damage and blood oxidative stress in rats. West Indian Med J 57(4):323–326

    CAS  PubMed  Google Scholar 

  14. Kar F, Hacioglu C, Senturk H, Donmez DB, Kanbak G (2020) The role of oxidative stress, renal inflammation, and apoptosis in post ischemic reperfusion injury of kidney tissue: the protective effect of dose-dependent boric acid administration. Biol Trace Elem Res 195:150–158

    Article  CAS  PubMed  Google Scholar 

  15. Kar F, Hacioğlu C, Kaçar S (2023) The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways. Environ Toxicol 38(1):70–77

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ke Y, Zhan L, Lu T, Zhou C, Chen X, Dong Y, Guiyuan L, Chen S (2020) Polysaccharides of Dendrobium officinale Kimura & Migo leaves protect against ethanol-induced gastric mucosal injury via the AMPK/mTOR signaling pathway in vitro and vivo. Front Pharmacol 11:526349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khaliq H, Juming Z, Ke-Mei P (2018) The physiological role of boron on health. Biol Trace Elem Res 186:31–51

    Article  CAS  PubMed  Google Scholar 

  18. Laine L, Weinstein WM (1988) Histology of alcoholic hemorrhagic “gastritis”: a prospective evaluation. Gastroenterology 94(6):1254–1262

    Article  CAS  PubMed  Google Scholar 

  19. Lee J, Kim MH, Kim H (2022) Anti-oxidant and anti-inflammatory effects of Astaxanthin on gastrointestinal diseases. Int J Mol Sci 23(24):15471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lieber CS, Packer L (2002) S-Adenosylmethionine: molecular, biological, and clinical aspects—an introduction. Am J Clin Nutr 76(5):1148S-1150S

    Article  CAS  PubMed  Google Scholar 

  21. Lin H, Honglang L, Weifeng L, Junmin C, Jiantao Y, Junjing G (2017) The mechanism of alopolysaccharide protecting ulceralive colitis. Biomed Pharmacother 88:145–150

    Article  CAS  PubMed  Google Scholar 

  22. Liu WH, Liu TC, Yin MC (2008) Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury. Food Chem Toxicol 46(5):1503–1509

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Sui D, Fu W, Sun L, Li Y, Yu P, Xiaofeng Y, Zhou Y, Xu H (2021) Protective effects of polysaccharides from Panax ginseng on acute gastric ulcers induced by ethanol in rats. Food Funct 12(6):2741–2749

    Article  CAS  PubMed  Google Scholar 

  24. Malfertheiner P, Chan FK, McColl KE (2009) Peptic ulcer disease. Lancet 374(9699):1449–1461

    Article  CAS  PubMed  Google Scholar 

  25. Mima Y, Suzuki S, Fujii T, Morikawa T, Tamaki S, Takubo K, Shimoda M, Miyamoto T, Watanabe K, Matsumoto M, Nakamura M, Fujita N (2019) Potential involvement of semaphorin 3A in maintaining intervertebral disc tissue homeostasis. J Orthop Res 37(4):972–980

    Article  CAS  PubMed  Google Scholar 

  26. Morcillo EJ, Estrela J, Cortijo J (1999) Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants. Pharmacol Res 40(5):393–404

    Article  CAS  PubMed  Google Scholar 

  27. Movassagh H, Tatari N, Shan L, Koussih L, Alsubait D, Khattabi M, Redhu NS, Roth M, Tamm M, Chakir J, Gounni AS (2016) Human airway smooth muscle cell proliferation from asthmatics is negatively regulated by semaphorin3A. Oncotarget 7(49):80238

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nerstedt A, Johansson A, Andersson CX, Cansby E, Smith U, Mahlapuu M (2010) AMP-activated protein kinase inhibits IL-6-stimulated inflammatory response in human liver cells by suppressing phosphorylation of signal transducer and activator of transcription 3 (STAT3). Diabetologia 53:2406–2416

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen FH (2009) Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats. J Trace Elem Med Biol 23(3):204–213

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen FH (2014) Update on human health effects of boron. J Trace Elem Med Biol 28(4):383–387

    Article  CAS  PubMed  Google Scholar 

  31. Park YJ, Ko JW, Jang Y, Kwon YH (2013) Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res 38:1561–1571

    Article  CAS  PubMed  Google Scholar 

  32. Ralston NV, Hunt CD (2001) Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis. Biochimica et Biophysica 1527(1–2):20–30

    Article  CAS  Google Scholar 

  33. Rodríguez-Bayona B, Ramos-Amaya A, López-Blanco R, Campos-Caro A, Brieva JA (2013) STAT-3 activation by differential cytokines is critical for human in vivo-generated plasma cell survival and Ig secretion. J Immunol 191:4996

    Article  PubMed  Google Scholar 

  34. Sakuta H, Suzuki T (2005) Alcohol consumption and plasma homocysteine. Alcohol 37(2):73–77

    Article  CAS  PubMed  Google Scholar 

  35. Sanpinit S, Chonsut P, Punsawad C, Wetchakul P (2021) Gastroprotective and antioxidative effects of the traditional thai polyherbal formula phy-blica-d against ethanol-induced gastric ulcers in rats. Nutrients 14(1):172

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sogut I, Oglakci A, Kartkaya K, Ol KK, Sogut MS, Kanbak G, Inal ME (2015) Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Exp Ther Med 9(3):1023–1027

    Article  CAS  PubMed  Google Scholar 

  37. Sogut I, Paltun SO, Tuncdemir M, Ersoz M, Hurdag C (2018) The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats. Can J Physiol Pharmacol 96(4):404–411

    Article  CAS  PubMed  Google Scholar 

  38. Teng Y, Yin Z, Li J, Li K, Li X, Zhang Y (2017) Adenovirus-mediated delivery of Sema3A alleviates rheumatoid arthritis in a serum-transfer induced mouse model. Oncotarget 8(39):66270

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang SW, Sun YM (2014) The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer. Int J Oncol 44(4):1032–1040

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Lin H, Wu G, Zhu M, Li M (2021) IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Front Oncol 11:760971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zatorski H, Salaga M, Zielińska M, Majchrzak K, Binienda A, Kordek R, Malecka-Panas E, Fichna J (2021) AdipoRon, an orally active, synthetic agonist of AdipoR1 and AdipoR2 receptors has gastroprotective effect in experimentally induced gastric ulcers in mice. Molecules 26(10):2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the of Kütahya Health Sciences University Scientific Research Projects, Kütahya, Turkey with the grant numbers FBA-2021-88.

Author information

Authors and Affiliations

Authors

Contributions

FK designed and managed the study. All authors participated equally in performing experiments, carrying out analysis, and interpreting the results. ACG drafted the manuscript and FK and CO revised critically the article.

Corresponding author

Correspondence to Fatih Kar.

Ethics declarations

Competing Interest

Authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gündoğdu, A.Ç., Özbayer, C. & Kar, F. Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways. Biol Trace Elem Res 202, 2124–2132 (2024). https://doi.org/10.1007/s12011-023-03817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03817-7

Keywords

Navigation