Skip to main content
Log in

Association of Serum Selenium and Selenoprotein P with Oxidative Stress Biomarkers in Patients with Polycystic Ovary Syndrome

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age which is characterized by various reproductive and metabolic disorders. Oxidative stress (OS) is now recognized to be involved in the pathogenesis of PCOS which could be targeted in the management of PCOS-related complications. Selenium (Se), as an antioxidant trace element, has been shown to decrease in PCOS patients. This study aimed to investigate the relationship between the Se and selenoprotein P (SELENOP) levels with OS markers in women with PCOS. In this cross-sectional study, 125 females aged 18–45 years diagnosed with PCOS were included. Demographic, clinical, and lifestyle information of participants were obtained using the relevant questionnaires. Fasting blood samples were collected to measure biochemical parameters. Serum levels of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase activities as well as anthropometric measurements were assessed across tertiles of serum concentrations of Se and SELENOP. Higher serum levels of Se were associated with higher serum TAC levels (β=0.42, P<0.001) and erythrocytes GPx activity (β=0.28, P=0.002) as well as with lower serum TBARS levels (β= −0.26, P=0.003). Similarly, higher serum levels of SELENOP were associated with higher TAC (β=0.32, P<0.001) and erythrocyte GPx activity (β=0.30, P=0.001). SELENOP also showed an inverse association with serum levels of TBARS (β= −0.40, P<0.001). Nevertheless, erythrocytes SOD and CAT activities showed no significant relationships with serum Se and SELENOP concentrations (all P>0.05). The present study found that serum Se and SELENOP levels were inversely associated with TBARS levels and positively associated with TAC levels and erythrocytes GPx activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barthelmess EK, Naz RK (2014) Polycystic ovary syndrome: current status and future perspective. Front Biosci (Elite Ed) 6:104

    PubMed  Google Scholar 

  2. Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37:467–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deswal R, Narwal V, Dang A, Pundir CS (2020) The prevalence of polycystic ovary syndrome: a brief systematic review. J Hum Reprod Sci 13:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE (2005) Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metabol 90:1929–1935

    Article  CAS  Google Scholar 

  5. Corbett SJ, McMichael AJ, Prentice AM (2009) Type 2 diabetes, cardiovascular disease, and the evolutionary paradox of the polycystic ovary syndrome: a fertility first hypothesis. Am J Hum Biol 21:587–598

    Article  PubMed  Google Scholar 

  6. Macut D, Panidis D, Glišić B, Spanos N, Petakov M, Bjekić J et al (2008) Lipid and lipoprotein profile in women with polycystic ovary syndrome. Can J Physiol Pharmacol 86:199–204

    Article  CAS  PubMed  Google Scholar 

  7. Fenkci V, Fenkci S, Yilmazer M, Serteser M (2003) Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertil Steril 80:123–127

    Article  PubMed  Google Scholar 

  8. González F, Minium J, Rote NS, Kirwan JP (2005) Hyperglycemia alters tumor necrosis factor-α release from mononuclear cells in women with polycystic ovary syndrome. J Clin Endocrinol Metabol 90:5336–5342

    Article  Google Scholar 

  9. Mahalingaiah S, Diamanti-Kandarakis E (2015) Targets to treat metabolic syndrome in polycystic ovary syndrome. Expert Opin Ther Targets 19:1561–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yilmaz M, Bukan N, Gk A, Karakoç A, Toruner F, Çakir N et al (2005) The effects of rosiglitazone and metformin on oxidative stress and homocysteine levels in lean patients with polycystic ovary syndrome. Hum Reprod 20:3333–3340

    Article  CAS  PubMed  Google Scholar 

  11. Mizgier M, Jarząbek-Bielecka G, Wendland N, Jodłowska-Siewert E, Nowicki M, Brożek A et al (2021) Relation between inflammation, oxidative stress, and macronutrient intakes in normal and excessive body weight adolescent girls with clinical features of polycystic ovary syndrome. Nutrients 13:896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coskun A, Arikan T, Kilinc M, Arikan DC, Ekerbiçer HÇ (2013) Plasma selenium levels in Turkish women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 168:183–186

    Article  CAS  PubMed  Google Scholar 

  13. Poormoosavi SM, Behmanesh MA, Varzi HN, Mansouri S, Janati S (2021) The effect of follicular fluid selenium concentration on oocyte maturation in women with polycystic ovary syndrome undergoing in vitro fertilization/intracytoplasmic sperm injection: a cross-sectional study. Int J Reprod Biomed 19:689

    Article  CAS  Google Scholar 

  14. Hajizadeh-Sharafabad F, Moludi J, Tutunchi H, Taheri E, Izadi A, Maleki V (2019) Selenium and polycystic ovary syndrome; current knowledge and future directions: a systematic review. Horm Metab Res 51:279–287

    Article  CAS  PubMed  Google Scholar 

  15. Razavi M, Jamilian M, Kashan ZF, Heidar Z, Mohseni M, Ghandi Y et al (2016) Selenium supplementation and the effects on reproductive outcomes, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome. Horm Metab Res 48:185–190

    Article  CAS  PubMed  Google Scholar 

  16. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215

    Article  CAS  PubMed  Google Scholar 

  17. Persson-Moschos M, Huang W, Srikumar T, Åkesson B, Lindeberg S (1995) Selenoprotein P in serum as a biochemical marker of selenium status. Analyst 120:833–836

    Article  CAS  PubMed  Google Scholar 

  18. Burk RF, Hill KE (2009) Selenoprotein P—expression, functions, and roles in mammals. Biochim Biophys Acta 1790:1441–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shetty S, Copeland PR (2018) Molecular mechanism of selenoprotein P synthesis. Biochim Biophys Acta Gen Subj 1862:2506–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asemi Z, Jamilian M, Mesdaghinia E, Esmaillzadeh A (2015) Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: randomized, double-blind, placebo-controlled trial. Nutrition 31:1235–1242

    Article  CAS  PubMed  Google Scholar 

  21. TR ESHRE, Group A-SPCW (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81:19–25

    Article  Google Scholar 

  22. Moghaddam MB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S (2012) The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci J 18:1073–1080

    Google Scholar 

  23. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32:S498–S504

    Article  CAS  PubMed  Google Scholar 

  24. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395

    Article  PubMed  Google Scholar 

  25. Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  26. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  PubMed  Google Scholar 

  27. Aebi H (1984) Catalase in vitro. In: Methods enzymol. Academic Press, San Diego 105:121–126

    Google Scholar 

  28. Shreenath AP, Ameer MA, Dooley J (2020) Selenium deficiency. In: StatPearls, Treasure Island (FL), USA

  29. Kanafchian M, Mahjoub S, Esmaeilzadeh S, Rahsepar M, Mosapour A (2018) Status of serum selenium and zinc in patients with the polycystic ovary syndrome with and without insulin resistance. Middle East Fertil Soc J 23:241–245

    Article  Google Scholar 

  30. Macut D, Bjekić-Macut J, Savić-Radojević A (2013) Dyslipidemia and oxidative stress in PCOS. Polycystic Ovary Syndrome 40:51–63

    Article  CAS  Google Scholar 

  31. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  32. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54

    Article  CAS  PubMed  Google Scholar 

  33. Dubey P, Reddy S, Boyd S, Bracamontes C, Sanchez S, Chattopadhyay M et al (2021) Effect of nutritional supplementation on oxidative stress and hormonal and lipid profiles in PCOS-affected females. Nutrients 13:2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guillin OM, Vindry C, Ohlmann T, Chavatte L (2019) Selenium, selenoproteins and viral infection. Nutrients 11:2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mostert V (2000) Selenoprotein P: properties, functions, and regulation. Arch Biochem Biophys 376:433–438

    Article  CAS  PubMed  Google Scholar 

  36. Bahmani F, Kia M, Soleimani A, Mohammadi AA, Asemi Z (2016) The effects of selenium supplementation on biomarkers of inflammation and oxidative stress in patients with diabetic nephropathy: a randomised, double-blind, placebo-controlled trial. Br J Nutr 116:1222–1228

    Article  CAS  PubMed  Google Scholar 

  37. Kocyigit A, Armutcu F, Gurel A, Ermis B (2004) Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma. Biol Trace Elem Res 97:31–41

    Article  CAS  PubMed  Google Scholar 

  38. binti Othman F, bin Jan Mohamed HJ, Sirajudeen K, Rajab NF (2017) The influence of selenium status on body composition, oxidative DNA damage and total antioxidant capacity in newly diagnosed type 2 diabetes mellitus: a case-control study. J Trace Elem Med Biol 43:106–112

    Article  CAS  Google Scholar 

  39. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    Article  PubMed  PubMed Central  Google Scholar 

  40. dos Santos ACS, Azevedo GD, Lemos TMAM (2016) The influence of oxidative stress in inflammatory process and insulin resistance in obese women with polycystic ovary syndrome. Transl Biomed 7:1–4

    Google Scholar 

  41. Enechukwu CI, Onuegbu AJ, Olisekodiaka MJ, Eleje GU, Ikechebelu JI, Ugboaja JO et al (2019) Oxidative stress markers and lipid profiles of patients with polycystic ovary syndrome in a Nigerian tertiary hospital. Obstet Gynecol Sci 62:335–343

    Article  PubMed  PubMed Central  Google Scholar 

  42. Radomski D, Orzechowska A, Barcz E (2007) Present conceptions of etiopathogenesis of polycystic ovary syndrome. Ginekol Pol 78(5):393–399

    PubMed  Google Scholar 

  43. Jeelani H, Ganie MA, Masood A, Amin S, Kawa IA, Fatima Q et al (2019) Assessment of PON1 activity and circulating TF levels in relation to BMI, testosterone, HOMA-IR, HDL-C, LDL-C, CHO, SOD activity and TAC in women with PCOS: an observational study. Diabetes Metab Syndr Clin Res Rev 13:2907–2915

    Article  Google Scholar 

  44. Sabuncu T, Vural H, Harma M, Harma M (2001) Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease☆. Clin Biochem 34:407–413

    Article  CAS  PubMed  Google Scholar 

  45. Zhang D, Luo W-Y, Liao H, Wang C-F, Sun Y (2008) The effects of oxidative stress to PCOS. Sichuan Da Xue Xue Bao Yi Xue Ban 39:421–423

    CAS  PubMed  Google Scholar 

  46. Huang K, Liu H, Chen Z, Xu H (2002) Role of selenium in cytoprotection against cholesterol oxide-induced vascular damage in rats. Atherosclerosis 162:137–144

    Article  CAS  PubMed  Google Scholar 

  47. Xia Y, Hill KE, Byrne DW, Xu J, Burk RF (2005) Effectiveness of selenium supplements in a low-selenium area of China. Am J Clin Nutr 81:829–834

    Article  CAS  PubMed  Google Scholar 

  48. Hasani M, Djalalinia S, Khazdooz M, Asayesh H, Zarei M, Gorabi AM et al (2019) Effect of selenium supplementation on antioxidant markers: a systematic review and meta-analysis of randomized controlled trials. Hormones 18:451–462

    Article  PubMed  Google Scholar 

  49. Mahmoodpoor A, Hamishehkar H, Sanaie S, Behruzizad N, Iranpour A, Koleini E et al (2018) Antioxidant reserve of the lungs and ventilator-associated pneumonia: a clinical trial of high dose selenium in critically ill patients. J Crit Care 44:357–362

    Article  CAS  PubMed  Google Scholar 

  50. Tabatabaei A, Babaee M, Moradi N, Nabavi M, Arshi S, Fallah S (2020) Serum concentration of selenium and GPX enzyme activity in Iranian children with asthma. Mod Care J 17:e102396

  51. Maouche N, Meskine D, Alamir B, Koceir E-A (2015) Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: manganese and selenium interest in Algerian participants with dysthyroidism. J Trace Elem Med Biol 32:112–121

    Article  CAS  PubMed  Google Scholar 

  52. Rua RM, Ojeda ML, Nogales F, Rubio JM, Romero-Gómez M, Funuyet J et al (2014) Serum selenium levels and oxidative balance as differential markers in hepatic damage caused by alcohol. Life Sci 94:158–163

    Article  CAS  PubMed  Google Scholar 

  53. Sancak B, Ünal A, Candan S, Coşkun U, Günel N (2003) Association between oxidative stress and selenium levels in patients with breast cancer at different clinical stages. J Trace Elem Exp Med 16:87–94

    Article  CAS  Google Scholar 

  54. Luo Y, He X, Hu L, Zhao J, Su K, Lei Y et al (2022) The relationship between plasma selenium, antioxidant status, inflammatory responses and ischemic cardiomyopathy: a case-control study based on matched propensity scores. J Inflamm Res 15:5757–5765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    Article  PubMed  PubMed Central  Google Scholar 

  56. De Leon JAD, Borges CR (2020) Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J Vis Exp 159. https://doi.org/10.3791/61122

  57. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF (2013) Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update 19:268–288

    Article  CAS  PubMed  Google Scholar 

  58. Kuşçu NK, Var A (2009) Oxidative stress but not endothelial dysfunction exists in non-obese, young group of patients with polycystic ovary syndrome. Acta Obstet Gynecol Scand 88:612–617

    Article  PubMed  Google Scholar 

  59. Zhang J, Bao Y, Zhou X, Zheng L (2019) Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol 17:67

    Article  PubMed  PubMed Central  Google Scholar 

  60. Eftekhari A, Ezlegini F, Firoozray M (2021) Determination of serum level of selenoprotein p and oxidative stress in type 2 diabetes patients and their correlation with serum level of glucose and lipid parameters as a case-control study. Stud Med Sci 32:597–606

    Article  Google Scholar 

  61. Aderao GN, Jadhav SE, Pattanaik AK, Gupta SK, Ramakrishnan S, Lokesha E et al (2023) Dietary selenium levels modulates antioxidant, cytokine and immune response and selenoproteins mRNA expression in rats under heat stress condition. J Trace Elem Med Biol 75:127105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the vice-chancellor of research and nutrition research center of Zabol University of Medical Sciences for their financial support. The researchers also appreciate all patients that participated in this study.

Funding

This work was supported by the Zabol University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Farshad Amirkhizi and Somayyeh Asghari contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Soudabeh Hamedi-Shahraki and Farshad Amirkhizi. The first draft of the manuscript was written by Mahdiyeh Taghizadeh and Banafshe Khalese-Ranjbar. Somayyeh Asghari commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Somayyeh Asghari.

Ethics declarations

Ethics Approval

The study protocol was approved by the ethics committee of Zabol University of Medical Sciences (ethics code: IR.ZBMU.REC.1399.084) and conducted according to the guidelines of the Declaration of Helsinki.

Consent to Participate

Informed consent was obtained from all participants prior to the study enrollment.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhizi, F., Taghizadeh, M., Khalese-Ranjbar, B. et al. Association of Serum Selenium and Selenoprotein P with Oxidative Stress Biomarkers in Patients with Polycystic Ovary Syndrome. Biol Trace Elem Res 202, 947–954 (2024). https://doi.org/10.1007/s12011-023-03747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03747-4

Keywords

Navigation