Skip to main content
Log in

Dietary Zinc Ameliorates TNBS-Induced Colitis in Mice Associated with Regulation of Th1/Th2/Th17 Balance and NF-κB/NLRP3 Signaling Pathway

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, are chronic relapsing inflammatory gastrointestinal tract diseases of uncertain origin, which are frequently associated with zinc deficiency. Animal models have a considerable value in elucidating the process of IBD. In this study, 50 male C57BL/6 J mice were randomly assigned to five groups: control group (Con), 2,4,6-trinitrobenzenesulfonic acid (TNBS) group, and three zinc supplementation groups, namely 160 ppm group, 400 ppm group, and 1000 ppm group. The results showed that supplementation of dietary zinc with zinc oxide could effectively relieve the severity of ulcerative colitis induced by TNBS in mice. We demonstrate that the protective mechanism involves the immunomodulation of dietary zinc by increasing CD3+, CD3+CD8+, and Th2 cells, suppressing Th1 and Th17 cells, and decreasing the production of serum IL-1β and IL-18. The dietary zinc oxide seems to be able to suppress the NF-κB/NLRP3 signaling pathway by downregulating the mRNA and protein expression of NIK, IKK, NF-κB, and NLRP3. The results suggest that dietary supplementation of zinc oxide may protect against colitis, and proper daily zinc supplementation may reduce the risk of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/supplementary material, and further inquiries can be directed to the corresponding author.

References

  1. Langner C, Magro F, Driessen A, Ensari A, Mantzaris GJ, Villanacci V et al (2014) The histopathological approach to inflammatory bowel disease: a practice guide. Virchows Arch 464:511–527. https://doi.org/10.1007/s00428-014-1543-4

    Article  CAS  PubMed  Google Scholar 

  2. Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A et al (2020) Crohn’s disease. Nat Rev Dis Primers 6:22. https://doi.org/10.1038/s41572-020-0156-2

    Article  PubMed  Google Scholar 

  3. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI et al (2017) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390:2769–2778. https://doi.org/10.1016/S0140-6736(17)32448-0

    Article  PubMed  Google Scholar 

  4. Ye L, Cao Q, Cheng J (2013) Review of inflammatory bowel disease in China. ScientificWorldJournal 2013:296470. https://doi.org/10.1155/2013/296470

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu KC (2021) Pay attention to the difficulties and hot issues in the diagnosis and treatment of inflammatory bowel disease. Chin J Front Med Sci 13:1. https://doi.org/10.12037/YXQY.2021.07-01

    Article  Google Scholar 

  6. Mao R, Hu PJ (2016) The future of IBD therapy: where are we and where should we go next? Dig Dis 34:175–179. https://doi.org/10.1159/000443135

    Article  PubMed  Google Scholar 

  7. Gîlcă-Blanariu GE, Diaconescu S, Ciocoiu M, Stefănescu G (2018) New insights into the role of trace elements in IBD. Biomed Res Int 2018:1813047. https://doi.org/10.1155/2018/1813047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bertani L, Ribaldone DG, Bellini M, Mumolo MG, Costa F (2021) Inflammatory bowel diseases: is there a role for nutritional suggestions? Nutrients 13:1387. https://doi.org/10.3390/nu13041387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Massironi S, Cavalcoli F, Rausa E, Invernizzi P, Braga M, Vecchi M (2020) Understanding short bowel syndrome: Current status and future perspectives. Dig Liver Dis 52:253–261. https://doi.org/10.1016/j.dld.2019.11.013

    Article  PubMed  Google Scholar 

  10. Lih-Brody L, Powell SR, Collier KP, Reddy GM, Cerchia R, Kahn E et al (1996) Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig Dis Sci 41:2078–2086. https://doi.org/10.1007/BF02093613

    Article  CAS  PubMed  Google Scholar 

  11. Suwendi E, Iwaya H, Lee JS, Hara H, Ishizuka S (2012) Zinc deficiency induces dysregulation of cytokine productions in an experimental colitis of rats. Biomed Res 33:329–336. https://doi.org/10.2220/biomedres.33.329

    Article  CAS  PubMed  Google Scholar 

  12. Sakurai K, Furukawa S, Katsurada T, Otagiri S, Yamanashi K, Nagashima K et al (2022) Effectiveness of administering zinc acetate hydrate to patients with inflammatory bowel disease and zinc deficiency: a retrospective observational two-center study. Intest Res 20:78–89. https://doi.org/10.5217/ir.2020.00124

    Article  PubMed  Google Scholar 

  13. Zhang L, Shao F, Li L (2021) Association of copper and zinc intake with inflammatory bowel disease and fecal incontinence symptoms: evidence from the national health and nutrition examination survey. Biol Trace Elem Res 199:2543–2551. https://doi.org/10.1007/s12011-020-02390-7

    Article  CAS  PubMed  Google Scholar 

  14. de Moura MSB, Soares NRM, Barros SÉL, de Pinho FA, Silva TMC, Bráz DC et al (2020) Zinc gluconate supplementation impacts the clinical improvement in patients with ulcerative colitis. Biometals 33:15–27. https://doi.org/10.1007/s10534-019-00225-0

    Article  CAS  PubMed  Google Scholar 

  15. Soares NRM, de Moura MSB, de Pinho FA, Silva TMC, de Lima Barros SÉ, de Castro AA et al (2018) Zinc supplementation reduces inflammation in ulcerative colitis patients by downregulating gene expression of Zn metalloproteins. PharmaNutrition 6:119–124. https://doi.org/10.1016/j.phanu.2018.06.004

    Article  Google Scholar 

  16. Tran CD, Ball JM, Sundar S, Coyle P, Howarth GS (2007) The role of zinc and metallothionein in the dextran sulfate sodium-induced colitis mouse model. Dig Dis Sci 52:2113–2121. https://doi.org/10.1007/s10620-007-9765-9

    Article  CAS  PubMed  Google Scholar 

  17. Luk HH, Ko JK, Fung HS, Cho CH (2002) Delineation of the protective action of zinc sulfate on ulcerative colitis in rats. Eur J Pharmacol 443:197–204. https://doi.org/10.1016/s0014-2999(02)01592-3

    Article  CAS  PubMed  Google Scholar 

  18. Ohkawara T, Takeda H, Kato K, Miyashita K, Kato M, Iwanaga T et al (2005) Polaprezinc (N-(3-aminopropionyl)-L-histidinato zinc) ameliorates dextran sulfate sodium-induced colitis in mice. Scand J Gastroenterol 40:1321–1327. https://doi.org/10.1080/00365520510023530

    Article  CAS  PubMed  Google Scholar 

  19. Tran CD, Butler RN, Philcox JC, Rofe AM, Howarth GS, Coyle P (1998) Regional distribution of metallothionein and zinc in the mouse gut: comparison with metallothionien-null mice. Biol Trace Elem Res 63(3):239–251. https://doi.org/10.1007/BF02778942

    Article  CAS  PubMed  Google Scholar 

  20. National Toxicology Program (2019) NTP technical report on the toxicology and carcinogenesis study of dietary zinc (CASRN 5263–02–5) in sprague dawley (Hsd: Sprague Dawley® SD®) Rats (Feed Study). Research Triangle Park, NC. https://doi.org/10.22427/NTP-TR-592

  21. Han L, Sayyid ZN, Altman RB (2021) Modeling drug response using network-based personalized treatment prediction (NetPTP) with applications to inflammatory bowel disease. PLoS Comput Biol 17:e1008631. https://doi.org/10.1371/journal.pcbi.1008631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia K, Wang Y, Tong X, Wang R (2020) KGF is delivered to inflammatory and induces the epithelial hyperplasia in trinitrobenzene sulfonic acid-induced ulcerative colitis rats. Drug Des Devel Ther 14:217–231. https://doi.org/10.2147/DDDT.S227651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel SH, Rachchh MA, Jadav PD (2012) Evaluation of anti-inflammatory effect of anti-platelet agent-clopidogrel in experimentally induced inflammatory bowel disease. Indian J Pharmacol 44:744–748. https://doi.org/10.4103/0253-7613.103278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maralani M, Shanehbandi D, Asadi M, Hashemzadeh S, Hajiasgharzadeh K, Mashhadi Abdolahi H et al (2021) Expression profiles of miR-196, miR-132, miR-146a, and miR-134 in human colorectal cancer tissues in accordance with their clinical significance: comparison regarding KRAS mutation. Wien Klin Wochenschr 133:1162–1170. https://doi.org/10.1007/s00508-021-01933-9

    Article  CAS  PubMed  Google Scholar 

  25. Monteleone I, Marafini I, Dinallo V, Di Fusco D, Troncone E, Zorzi F et al (2017) Sodium chloride-enriched diet enhanced inflammatory cytokine production and exacerbated experimental colitis in mice. J Crohns Colitis 11:237–245. https://doi.org/10.1093/ecco-jcc/jjw139

    Article  PubMed  Google Scholar 

  26. Xu M, Shen Y, Cen M, Zhu Y, Cheng F, Tang L et al (2021) Modulation of the gut microbiota-farnesoid X receptor axis improves deoxycholic acid-induced intestinal inflammation in mice. J Crohns Colitis 15:1197–1210. https://doi.org/10.1093/ecco-jcc/jjab003

    Article  PubMed  Google Scholar 

  27. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500s-s1508. https://doi.org/10.1093/jn/130.5.1500S

    Article  CAS  PubMed  Google Scholar 

  28. Vagianos K, Bector S, McConnell J, Bernstein CN (2007) Nutrition assessment of patients with inflammatory bowel disease. JPEN J Parenter Enteral Nutr 31:311–319. https://doi.org/10.1177/0148607107031004311

    Article  CAS  PubMed  Google Scholar 

  29. Alkhouri RH, Hashmi H, Baker RD, Gelfond D, Baker SS (2013) Vitamin and mineral status in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 56:89–92. https://doi.org/10.1097/MPG.0b013e31826a105d

    Article  CAS  PubMed  Google Scholar 

  30. Gammoh NZ, Rink L (2017) Zinc in infection and inflammation. Nutrients 9:624. https://doi.org/10.3390/nu9060624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521. https://doi.org/10.1172/JCI30587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bábíčková J, Tóthová Ľ, Lengyelová E, Bartoňová A, Hodosy J, Gardlík R et al (2015) Sex differences in experimentally induced colitis in mice: a role for estrogens. Inflammation 38(5):1996–2006. https://doi.org/10.1007/s10753-015-0180-7

    Article  CAS  PubMed  Google Scholar 

  33. Son HJ, Kim N, Song CH, Nam RH, Choi SI, Kim JS et al (2019) Sex-related alterations of gut microbiota in the C57BL/6 mouse model of inflammatory bowel disease. J Cancer Prev 24(3):173–182. https://doi.org/10.15430/JCP.2019.24.3.173

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Punder K, Pruimboom L (2015) Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol 6:223. https://doi.org/10.3389/fimmu.2015.00223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tirosh O, Levy E, Reifen R (2007) High selenium diet protects against TNBS-induced acute inflammation, mitochondrial dysfunction, and secondary necrosis in rat colon. Nutrition 23(11–12):878–886. https://doi.org/10.1016/j.nut.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  36. Triantafillidis JK, Douvi G, Agrogiannis G, Patsouris E, Gikas A, Papalois AE (2014) Effect of mesalamine and prednisolone on TNBS experimental colitis, following various doses of orally administered iron. Biomed Res Int 2014:648535. https://doi.org/10.1155/2014/648535

    Article  PubMed  PubMed Central  Google Scholar 

  37. Skrovanek S, DiGuilio K, Bailey R, Huntington W, Urbas R, Mayilvaganan B et al (2014) Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol 5:496–513. https://doi.org/10.4291/wjgp.v5.i4.496

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu DY, Zhao HM, Zhao N, Lu C, Lu AP (2008) Effect of Bawei Xilei powder on CD3, CD4, CD8 T-lymphocytes of rats with ulcerative colitis. Zhongguo Zhong Yao Za Zhi 33:1301–1304

    PubMed  Google Scholar 

  39. Andreu-Ballester JC, Amigó-García V, Catalán-Serra I, Gil-Borrás R, Ballester F, Almela-Quilis A et al (2011) Deficit of gammadelta T lymphocytes in the peripheral blood of patients with Crohn’s disease. Dig Dis Sci 56:2613–2622. https://doi.org/10.1007/s10620-011-1636-8

    Article  PubMed  Google Scholar 

  40. Forster K, Goethel A, Chan CW, Zanello G, Streutker C, Croitoru K (2012) An oral CD3-specific antibody suppresses T-cell-induced colitis and alters cytokine responses to T-cell activation in mice. Gastroenterology 143:1298–1307. https://doi.org/10.1053/j.gastro.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  41. Karaca T, Uz YH, Demirtas S, Karaboga I, Can G (2015) Protective effect of royal jelly in 2,4,6 trinitrobenzene sulfonic acid-induced colitis in rats. Iran J Basic Med Sci 18:370–379

    PubMed  PubMed Central  Google Scholar 

  42. Karaboga İ, Demirtas S, Karaca T (2017) Investigation of the relationship between the Th17/IL-23 pathway and innate-adaptive immune system in TNBS-induced colitis in rats. Iran J Basic Med Sci 20:870–9. https://doi.org/10.22038/IJBMS.2017.9108

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li C, Xi Y, Li S, Zhao Q, Cheng W, Wang Z et al (2015) Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation. Mol Immunol 67:444–454. https://doi.org/10.1016/j.molimm.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  44. Pang J, Ding J, Zhang L, Zhang Y, Yang Y, Bai X et al (2020) Effect of recombinant serine protease from adult stage of Trichinella spiralis on TNBS-induced experimental colitis in mice. Int Immunopharmacol 86:106699. https://doi.org/10.1016/j.intimp.2020.106699

    Article  CAS  PubMed  Google Scholar 

  45. Zou Y, Dai SX, Chi HG, Li T, He ZW, Wang J et al (2015) Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm. Arch Pharm Res 38:1873–1887. https://doi.org/10.1007/s12272-014-0486-2

    Article  CAS  PubMed  Google Scholar 

  46. Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS (2020) Resveratrol downregulates miR-31 to promote T regulatory cells during prevention of TNBS-induced colitis. Mol Nutr Food Res 64:e1900633. https://doi.org/10.1002/mnfr.201900633

    Article  CAS  PubMed  Google Scholar 

  47. Tsai YL, Ko WS, Hsiao JL, Pan HH, Chiou Y (2018) Zinc sulfate improved the unbalanced T cell profiles in Der p-allergic asthma: an ex vivo study. Clin Respir J 12:563–571. https://doi.org/10.1111/crj.12563

    Article  CAS  PubMed  Google Scholar 

  48. Kloubert V, Blaabjerg K, Dalgaard TS, Poulsen HD, Rink L, Wessels I (2018) Influence of zinc supplementation on immune parameters in weaned pigs. J Trace Elem Med Biol 49:231–240. https://doi.org/10.1016/j.jtemb.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  49. Guttek K, Wagenbrett L, Reinhold A, Grüngreiff K, Reinhold D (2018) Zinc aspartate suppresses proliferation and Th1/Th2/Th17 cytokine production of pre-activated human T cells in vitro. J Trace Elem Med Biol 49:86–90. https://doi.org/10.1016/j.jtemb.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  50. Rosenkranz E, Metz CH, Maywald M, Hilgers RD, Weßels I, Senff T et al (2016) Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol Nutr Food Res 60:661–671. https://doi.org/10.1002/mnfr.201500524

    Article  CAS  PubMed  Google Scholar 

  51. Han F, Zhao X, Li X, Peng L, Liu W, Han J (2022) Bovine lactoferricin ameliorates intestinal inflammation and mucosal barrier lesions in colitis through NF-κB/NLRP3 signaling pathways. J Funct Foods 93:105090. https://doi.org/10.1016/j.jff.2022.105090

    Article  CAS  Google Scholar 

  52. Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6:262. https://doi.org/10.3389/fphar.2015.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Afonina IS, Zhong Z, Karin M, Beyaert R (2017) Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 18:861–869. https://doi.org/10.1038/ni.3772

    Article  CAS  PubMed  Google Scholar 

  54. Chen W, Wang J, Hua Z, Zhang Y (2020) Du Huo Ji Sheng Tang relieves knee osteoarthritis via suppressing NLRP3/NF-κB inflammatory signals in rats. Eur J Inflamm 18:2058739220942627. https://doi.org/10.1177/2058739220942627

    Article  CAS  Google Scholar 

  55. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62. https://doi.org/10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  56. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227. https://doi.org/10.1093/ajcn/51.2.225

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Chen H, Wang B, Cai C, Yang X, Chai Z et al (2017) ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci Rep 7:43126. https://doi.org/10.1038/srep43126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wan Y, Zhang B (2022) The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases. Biomolecules 12(7):900. https://doi.org/10.3390/biom12070900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of Sichuan Youngster Technology Co., Ltd., provided technical support assistance in HE slices making and Flow cytometry.

Funding

This work was supported by Chengdu University (2081921001) and Training Program for Innovation and Entrepreneurship of Chengdu University (S202211079126).

Author information

Authors and Affiliations

Authors

Contributions

Management and supervision: XP. Experimental operation: CW, JW, ZS, RZ, ML, and XS. Data collation and analysis: CW, JW, ZS, and KQ. Article writing: CW and ML. Paper revision and editing: XP and QY. The authors contributed to the article and approve the final submitted version of the manuscript.

Corresponding author

Correspondence to Xi Peng.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the ethical committee of Chengdu University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2968 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, C., Wang, J., Sun, Z. et al. Dietary Zinc Ameliorates TNBS-Induced Colitis in Mice Associated with Regulation of Th1/Th2/Th17 Balance and NF-κB/NLRP3 Signaling Pathway. Biol Trace Elem Res 202, 659–670 (2024). https://doi.org/10.1007/s12011-023-03715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03715-y

Keywords

Navigation