Skip to main content

Advertisement

Log in

Association Between Parameters of Cortisol Metabolism, Biomarkers of Minerals (Zinc, Selenium, and Magnesium), and Insulin Resistance and Oxidative Stress in Women with Obesity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This is a cross-sectional study with women divided into a group of those with obesity (n = 80) and a control group (n = 94). Statistical analysis was conducted using the SPSS program. There were high values of GPx and TBARS and reduced values of SOD in women with obesity compared to the control group. Obese women showed increased concentrations of cortisol in serum and urine as well as hypozincemia, hyposelenemia, and hypomagnesemia and increased urinary excretion of these minerals. There was a negative correlation between the cortisol/cortisone ratio and erythrocyte zinc and selenium concentrations and a significant positive correlation between GPx and SOD activity and erythrocyte and plasma concentrations of zinc and selenium. The results of the study suggest the influence of adiposity on the increase in cortisol concentrations and the role of this hormone in the compartmentalization of the minerals zinc, selenium, and magnesium. However, the association study does not allow identifying the impact of such action on the antioxidant defense system and insulin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The dataset that support the results and findings of this research are available from the corresponding author upon request.

References

  1. Meyhöfer S, Lautenbach A, Serfling G. Adipositas 2022 einebehandlungsbedürftigechronischeErkrankung Obesity a chronic disease requiring treatment. Dtsch Med Wochenschr 147(11):656–662. https://doi.org/10.1055/a-1657-2047

  2. Lechner K, Krauss RM (2022) Obesity and cardiovascular disease: beyond body weight and energy balance. Eur J PrevCardiol 29(17):2216–2217. https://doi.org/10.1093/eurjpc/zwac220. Erratum.In:EurJPrevCardiol.2022Dec14

    Article  Google Scholar 

  3. Lengton R, Iyer AM, van der Valk ES, Hoogeveen EK, Meijer OC, van der Voorn B, van Rossum EFC (2022) Variation in glucocorticoid sensitivity and the relation with obesity. Obes Rev 23(3):e13401. https://doi.org/10.1111/obr.13401

  4. Herrada AA, Olate-Briones A, Rojas A, Liu C, Escobedo N, Piesche M (2021) Adipose tissue macrophages as a therapeutic target in obesity-associated diseases. Obes Rev 22:e13200

    Article  CAS  PubMed  Google Scholar 

  5. Morais JBS, Dias TMDS, Cardoso BEP, de Paiva SM, Sousa TGV, Araújo DSC, Marreiro DDN (2022) Adipose tissue dysfunction: impact on metabolic changes? HormMetab Res 54(12):785–794. https://doi.org/10.1055/a-1922-7052

    Article  CAS  Google Scholar 

  6. Czapla-Iskrzycka A, Świątkowska-Stodulska R, Sworczak K (2022) Comorbidities in mild autonomous cortisol secretion - a clinical review of literature. Exp Clin Endocrinol Diabetes 130(9):567–576. https://doi.org/10.1055/a-1827-4113

    Article  CAS  PubMed  Google Scholar 

  7. Kim WJ, Park KM, Park JT, Seo E, An SK, Park HY, Lee E (2021) Sex-specific association of hair cortisol concentration with stress-related psychological factors in healthy young adults. Biol Sex Differ 12:1–7

    Article  Google Scholar 

  8. Schutten JC, Joris PJ, Minović I, Post A, van Beek AP, de Borst MH, Mensink RP, Bakker SJL (2021) Long-term magnesium supplementation improves glucocorticoid metabolism: a post-hoc analysis of an intervention trial. Clin Endocrinol (Oxf) 94(2):150–157. https://doi.org/10.1111/cen.14350

  9. Noh H, Paik HY, Kim J, Chung J (2014) The changes of zinc transporter ZnT gene expression in response to zinc supplementation in obese women. Biol Trace Elem Res 162(1–3):38–45

    Article  CAS  PubMed  Google Scholar 

  10. Reilly SM, Saltiel AR (2017) Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 13:633–643

    Article  CAS  PubMed  Google Scholar 

  11. Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Peana M, Dosa A, Piscopo S, GasmiBenahmed A, Costea DO (2022) Micronutrients deficiences in patients after bariatric surgery. Eur J Nutr 61(1):55–67. https://doi.org/10.1007/s00394-021-02619-8

    Article  PubMed  Google Scholar 

  12. Pickering G, Mazur A, Trousselard M, Bienkowski P, Yaltsewa N, Amessou M, Noah L, Pouteau E (2020) Magnesium status and stress: the vicious circle concept revisited. Nutrients 12(12):3672. https://doi.org/10.3390/nu12123672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kratschmar DV, Calabrese D, Walsh J, Lister A, Birk J, Appenzeller-Herzog C and Odermatt A (2012) Suppression of the Nrf2-dependent antioxidant response by glucocorticoids and 11β-HSD1-mediated glucocorticoid activation in hepatic cells. PloS one 7(5):e36774

  14. Torres DJ, Alfulaij N, Berry MJ (2021) Stress and the brain: an emerging role for selenium. Front Neurosci 15:666601. https://doi.org/10.3389/fnins.2021.666601

  15. Ministério da Saúde (Brasil) (2011) Orientações para a coleta e análise de dados antropométricosemserviços de saúde Norma Técnica do Sistema de VigilânciaAlimentar e Nutricional SISVAN (Ministério da Saúde Brasília)

  16. World Health Organization (2008) Waist circumference and waist-hip ratio: report of a WHO expert consultation. WHO Press, Geneva

    Google Scholar 

  17. World Health Organization (2000) Obesity: preventing and managing the global epidemic e report of a WHO consultation. WHO Press, Geneva

    Google Scholar 

  18. Tabela Brasileira de Composição de Alimentos (Brasil) (2011) (NEPAUNICAMP Campinas)

  19. Ferreira KS, Gomes JC, Bellato CR and Jordão CP (2002) Concentrações de selênioemalimentosconsumidos no. Brasil Rev Panam Salud Públic 11:172e7

  20. Instituto Brasileiro de Geografia e Estatística (2011) Pesquisa de OrçamentosFamiliares 2008–2009 tabelas de composiçãonutricionalosalimentosconsumidos no Brasil IBGE Rio de Janeiro

  21. US Department of Agriculture Agricultural Research Service (2016) Nutrient Data Laboratory USDA National Nutrient Database for Standard Reference Release 28 Slightly revised. http://www.ars.usda.gov/nea/bhnrc/mafcl

  22. Institute of Medicine (1997) Food and nutrition board dietary reference intakes for calcium phosphorus magnesium vitamin d and fluoride. Washington DC National Academy Press

  23. Institute of Medicine (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy Press, Washington, DC

    Google Scholar 

  24. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC

  25. Haubrock J, Nöthlings U, Volatier JL, Dekkers A, Ocké M et al (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 141(5):914–920

    Article  CAS  PubMed  Google Scholar 

  26. Laureano GHC, Torman VBL, Crispim SPC, Dekkers ALM, Camey SA (2016) Comparison of the ISU, NCI, MSM, and SPADE methods for estimating usual intake: a simulation study of nutrients consumed daily. Nutrients 8(3):166

    Article  PubMed  PubMed Central  Google Scholar 

  27. MSM (2011) Multiple source method (MSM) for estimating usual dietary intake from short-term measurement data: user guide EFCOVAL. 41

  28. Souverein OW, Dekkers AL, Geelen A, Haubrock J, de Vries JH, Ocké MC et al (2011) Comparing four methods to estimate usual intake distributions. Eur J Clin Nutr 65(Suppl 1):S92-101

    Article  PubMed  Google Scholar 

  29. Fisberg RM, Marchioni DML, Slater B, Martini LA (2005) Inquéritosalimentares Métodos e Bases Científicas São Paulo Manole

  30. Jaime PC, Latorre MRDO, Fornés NS, Zerbini CAF (2003) Comparative study among two methods for energy adjustment for nutrient intake. Nutrire v 26 n único 11–18

  31. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol Baltimore 124(1):17–27

    Article  CAS  Google Scholar 

  32. Elin RJ (1987) Assessment of magnesium status. Clin Chem 33 n 11:1965–1970

  33. Topf JM, Murray PT (2003) Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord 4(2):195–206

    Article  PubMed  Google Scholar 

  34. Tietz NW (1995) Clinical guide to laboratory test 3 Philadelphia: W.B. Saunders Company

  35. Gibson RS (2005) Assessment of chromium, copper and zinc status In GIBSON R S Principles of Nutritional Assessment New York Oxford University Press cap 24:711–30

  36. Guthrie HA, Picciano MF (n.d.) Micronutrient minerals In Guthrie HA

  37. Picciano MF (1994 ) eds Human Nutrition 351–7

  38. Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status a review. European J Clin Nutri v 58 n 3:391–402

  39. Vitoux D, Arnaud J, Chappuis P (1999) Are copper, zinc and selenium in erythrocytes valuable biological indexes of nutrition and pathology? J Trace Elem Med Biol 13(03):113–128

    Article  CAS  PubMed  Google Scholar 

  40. Oster O, Prellwitz W (1990) The renal excretion of selenium. Biol Trace Elem Res 24:119–146

    Article  CAS  PubMed  Google Scholar 

  41. American Diabetes Association (2023) Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 46:S19–S40

    Article  Google Scholar 

  42. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1988) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  Google Scholar 

  43. Geloneze B et al (2009) HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metab 53:281–287

    Article  Google Scholar 

  44. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocite glutathione peroxidase. J Lab Clin Med 70(1):159–169

    Google Scholar 

  45. Aebi H (1984) Catalase in vitro Methods in Enzymology v 105:121–126

  46. Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  47. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93(5):1526–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Little RJ (1988) A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc 83(404):1198–1202

    Article  Google Scholar 

  49. Andreozzi VLR Function (2013) Disponívelem aleskaandreozzi.weebly.com/scripts-in-r.html

  50. Tenenhaus A, Philippe C, Frouin V (2015) Kernel generalized canonical correlation analysis. Comput Stat Data Anal 90:114–131

    Article  Google Scholar 

  51. Westerhuis JA, Kourti T, MacGregor JF (1998) Analysis of multiblock and hierarchical PCA and PLS models. J Chemom 12:301–321

    Article  CAS  Google Scholar 

  52. R Development Core Team (2022) R a language and environment for statistical computing Vienna Austria the R Foundation for Statistical Computing ISBN 3–900051–07–0. URL

  53. Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW (2011) Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS ONE 6(10):e26223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68(1):19–31

    Article  CAS  PubMed  Google Scholar 

  55. Chen D, Li X, Zhai Z, Shu HB (2002) A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1- induced NF-kappa B activation. J Biol Chem 277(18):15985–15991

    Article  CAS  PubMed  Google Scholar 

  56. Meyhöfer S, Lautenbach A, Serfling G (2022) Adipositas einebehandlungsbedürftigechronischeErkrankung [Obesity - a chronic disease requiring treatment]. Dtsch Med Wochenschr German 147(11):656–662. https://doi.org/10.1055/a-1657-2047

  57. Brandão-Neto J, Mendonça BB, Shuhama T, Marchini JS, Pimenta WP, Tornero MTT (1990) Zinc acutely and temporarily inhibits adrenal cortisol secretion in humans. Biol Trace Elem Res 24(1):83–89

    Article  PubMed  Google Scholar 

  58. Chen D, Li X, Zhai Z, Shu HB (2002) A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1- induced NF-kappa B activation. J Biol Chem 277(18):15985–15991

    Article  CAS  PubMed  Google Scholar 

  59. Fraker PJ, Osati-Ashtiani F, Wagner MA, King LE (1995) Possible roles for glucocorticoids and apoptosis in the suppression of lymphopoiesis during zinc deficiency a review. J Am Coll Nutr 14(1):11–17

  60. Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain research review 62(4):33–44

    Article  CAS  Google Scholar 

  61. Chanoine J, Wong ACK, Lavoie J (2004) Selenium deficiency impairs corticosterone and leptin responses to adrenocorticotropin in the rat. BioFactors 20(2):109–118

    Article  CAS  PubMed  Google Scholar 

  62. Chimienti F (2013) Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 26(1):1–11

    Article  PubMed  Google Scholar 

  63. Li YV (2014) Zinc and insulin in pancreatic beta-cells. Endocrine 45:178–189

    Article  PubMed  Google Scholar 

  64. Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR (2015) Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru 17(1):23–44

    Google Scholar 

  65. Vardatsikos G, Pandey NR, Srivastava AK (2013) Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem 120(1):8–17

    Article  CAS  PubMed  Google Scholar 

  66. Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch BiochemBiophys 458(1):40–47

    Article  CAS  Google Scholar 

  67. Fontenelle LC et al (2018) The role of selenium in insulin resistance. Braz J Pharm Sci 54

Download references

Author information

Authors and Affiliations

Authors

Contributions

Morais J.B.S., Cruz K.J.C., Oliveira A.R.S., Santos L.R., Melo S.R.S., Severo J.S., Cardoso B.E., and Dias T.M. have participated in the redaction and the review of the manuscript; Morais J.B.S., Oliveira A.R.S., Cruz K.J.C., Santos L.R., Melo S.R.S., Oliveira F.E., and Freitas S.T. have participated in generation, collection, assembly, analysis, and/or interpretation of data; Silva M.T. and Henriques G.S. performed analysis and/or interpretation of data; Morais J.B.S. and Marreiro D.N. had supervised the paper and participated in the redaction and the review of the paper.

Corresponding author

Correspondence to Dilina do Nascimento Marreiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, J.B.S., Cruz, K.J.C., de Oliveira, A.R.S. et al. Association Between Parameters of Cortisol Metabolism, Biomarkers of Minerals (Zinc, Selenium, and Magnesium), and Insulin Resistance and Oxidative Stress in Women with Obesity. Biol Trace Elem Res 201, 5677–5691 (2023). https://doi.org/10.1007/s12011-023-03639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03639-7

Keywords

Navigation