Skip to main content
Log in

Meta-analysis of TLR4 pathway-related protein alterations induced by arsenic exposure

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic is a toxic metal, which ultimately leads to cell apoptosis. TLR4 signaling pathway played a key role in immunomodulatory. Therefore, alterations in related proteins on the TLR4 signaling pathway induced by arsenic exposure was systematically reviewed and analyzed by meta-analysis. Some databases were searched including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and WANFANG MED ONLINE. The results of NF-κB, IKK, NF-κBp65, phospho-NF-κBp65, and TLR4 expressions were analyzed by Review Manage 5.3. In the arsenic intervention group, NF-κB, phospho-NF-κBp65, and TLR4 expression levels were higher than the control group, respectively. SMD and 95%CI were 11.29 (6.34, 16.24), 4.71(1.73, 7.68), and 5.79 (-4.22, 15.80). Compared to controls, in the exposed group, IKK levels were found to be 38.11-fold higher (Z = 0.97; P = 0.33); NF-κBp65 levels were found to be 0.92-fold higher (Z = 3.33; P = 0.0009) for normal cells and tissue, while IKK levels were found to be 5.18-fold lower (Z = 5.34; P < 0.0001); NF-κBp65 levels were found to be 2.01-fold lower (Z = 3.87; P = 0.0001) for abnormal cells. With comparing of low dose, high dose of arsenic exposure was found to reduce the expression of NF-κB, but increase the expression of NF-κBp65. This review supports the alterations in related proteins on the TLR4 signaling pathway induced by arsenic exposure, which is helpful to provide theoretical basis for the mechanism of toxicity of arsenic-induced immune system damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40(3):828–846. https://doi.org/10.1016/j.etap.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed MK, Shaheen N, Islam MS, Habibullah-al-Mamun M, Islam S, Mohiduzzaman M, Bhattacharjee L (2015) Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 128:284–292. S0045–6535(15)00118–6

  3. Akira S (2011) Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci 366(1579):2748–2755. https://doi.org/10.1098/rstb.2011.0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alidadi H, Tavakoly Sany SB, Zarif Garaati Oftadeh B, Mohamad T, Shamszade H, Fakhari M (2019) Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environ Health Prev Med 24(1):59. https://doi.org/10.1186/s12199-019-0812-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao SQ, Hu YH, Zhang L, Liu SN, Wang F, Xi SH (2015) Effects of dimethylarsinic acid on expression levels of IKKα and p65 in bladder epithelial cells of rats. Chinese J Ind Med 28(02):92–94. https://doi.org/10.13631/j.cnki.zggyyx.2015.02.004

    Article  CAS  Google Scholar 

  6. Chen G, Mao J, Zhao J, Zhang Y, Li T, Wang C, Xu L, Hu Q, Wang X, Jiang S, Nie X, Wu Q (2016) Arsenic trioxide mediates HAPI microglia inflammatory response and the secretion of inflammatory cytokine IL-6 via Akt/NF-kappaB signaling pathway. Regul Toxicol Pharmacol 81:480–488. https://doi.org/10.1016/j.yrtph.2016.09.027

    Article  CAS  PubMed  Google Scholar 

  7. Choudhury S, Gupta P, Ghosh S, Mukherjee S, Chakraborty P, Chatterji U, Chattopadhyay S (2016) Arsenic-induced dose-dependent modulation of the NF-kappaB/IL-6 axis in thymocytes triggers differential immune responses. Toxicology 357–358:85–96. https://doi.org/10.1016/j.tox.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  8. Ciesielska A, Matyjek M, Kwiatkowska K (2020) TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 78(4):1233–1261. https://doi.org/10.1007/s00018-020-03656-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong L, Liu Y, Wang D, Zhu K, Zou Z, Zhang A (2021) Imbalanced inflammatory response in subchronic arsenic-induced liver injury and the protective effects of Ginkgo biloba extract in rats: potential role of cytokines mediated cell-cell interactions. Environ Toxicol. https://doi.org/10.1002/tox.23324

    Article  PubMed  Google Scholar 

  10. Duan X, Gao S, Li J, Wu L, Zhang Y, Li W, Zhao L, Chen J, Yang S, Sun G, Li B (2017) Acute arsenic exposure induces inflammatory responses and CD4(+) T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kB, and Nrf2. Mol Immunol 81:160–172. https://doi.org/10.1016/j.molimm.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  11. Duker AA, Carranza E J, Hale M (2005) Arsenic geochemistry and health. Environ Int 31(5):631–641. S0160–4120(04)00195–3

  12. Ghosh J, Das J, Manna P, Sil PC (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240(1):73–87. https://doi.org/10.1016/j.taap.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  13. Gong X, Ivanov VN, Davidson MM, Hei TK (2015) Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell death. Arch Toxicol 89(7):1057–1070. https://doi.org/10.1007/s00204-014-1302-y

    Article  CAS  PubMed  Google Scholar 

  14. Hao Y, Li Y, Gao M, Dong W, Hu MR, Song L (2012) Arsenic trioxide induces apoptosis in MCF7 human breast cancer cells by inhibiting IKK/NF-κB pathway activation. Mil Med Sci 36(04):263–266

    CAS  Google Scholar 

  15. Heidari F, Bahari A, Amarlou A, Fakheri BA (2019) Fumaric acids as a novel antagonist of TLR-4 pathway mitigates arsenic-exposed inflammation in human monocyte-derived dendritic cells. Immunopharmacol Immunotoxicol 41(4):513–520. https://doi.org/10.1080/08923973.2019.1645166

    Article  CAS  PubMed  Google Scholar 

  16. Khanmohammadi S, Rezaei N (2021) Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol 93(5):2735–2739. https://doi.org/10.1002/jmv.26826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim MJ, Jung JH, Lee WS, Yun JW, Lu JN, Yi SM, Kim HJ, Chang SH, Kim GS, Hong SC, Ha WS (2014) Arsenic hexoxide enhances TNF-alpha-induced anticancer effects by inhibiting NF-kappaB activity at a safe dose in MCF-7 human breast cancer cells. Oncol Rep 31(5):2305–2311. https://doi.org/10.3892/or.2014.3085

    Article  CAS  PubMed  Google Scholar 

  18. Lai JL, Liu YH, Liu C, Qi MP, Liu RN, Zhu XF, Zhou QG, Chen YY, Guo AZ, Hu CM (2017) Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation 40(1):1–12. https://doi.org/10.1007/s10753-016-0447-7

    Article  CAS  PubMed  Google Scholar 

  19. Lim KH, Staudt LM (2013) Toll-like receptor signaling. Cold Spring Harb Perspect Biol 5(1):a011247. https://doi.org/10.1101/cshperspect.a011247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu SY, Yin XY, Cai SS, Hu NN, Yi QR, Li X (2014) Influence of low level and long-term arsenic exposure to the phosphorylated protein kinase B as well as its downstream signal factor IKK, I-ΚB and NF-κB in HaCat cells. Chin J Ctrl Endem Dis 29(01):12–14

    CAS  Google Scholar 

  21. Ma YB, Wu CY, Chen X (2005) Effect of As2O3 on expressiong of NF-κBp65, p53, c-Myc and hTERT in helerologous graft for human an breast infiltrating duct carcinoma in nude mice. J Fourth Mil Med Univ 26(08):752–754

    CAS  Google Scholar 

  22. Ma YB, Wu CY, Chen X (2006) Effects of As2O3 on expressiong of NF-κBp65, survivin and caspase-3 in human breast cancer. Chin J Bases Clin General Surg 13(04):409–412

    CAS  Google Scholar 

  23. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364. https://doi.org/10.1038/nri2079

    Article  CAS  PubMed  Google Scholar 

  24. Paudel YN, Angelopoulou E, Akyuz E, Piperi C, Othman I, Shaikh MF (2020) Role of innate immune receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 160:105172. https://doi.org/10.1016/j.phrs.2020.105172

    Article  CAS  PubMed  Google Scholar 

  25. Qiu J, Wu YP, Wang CQ, Liu H (2008) Inhibitory effects of arsenic trioxide in combination with aspirin on the angiogenesis of human gastric carcinoma xenografts in nude mice. J Clin Rehabilitative Tissue Eng Res 12(33):6434–6438

    CAS  Google Scholar 

  26. Qu X, Du J, Zhang C, Fu W, Xi H, Zou J, Hou J (2012) Arsenic trioxide exerts antimyeloma effects by inhibiting activity in the cytoplasmic substrates of histone deacetylase 6. PLoS ONE 7(2):e32215. https://doi.org/10.1371/journal.pone.0032215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roussel RR, Barchowsky A (2000) Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation. Arch Biochem Biophys 377(1):204–212. https://doi.org/10.1006/abbi.2000.1770

    Article  CAS  PubMed  Google Scholar 

  28. Sun Z, Li M, Bai L, Fu J, Lu J, Wu M, Zhou C, Zhang Y, Wu Y (2019) Arsenic trioxide inhibits angiogenesis in vitro and in vivo by upregulating FoxO3a. Toxicol Lett 315:1–8. S0378–4274(18)31747–8

  29. Wang L, Wang R, Fan L, Liang W, Liang K, Xu Y, Peng G, Ye Q (2017) Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol Immunol 81:118–126. https://doi.org/10.1016/j.molimm.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Zheng F, Zhang A (2021) Arsenic-induced lung inflammation and fibrosis in a rat model: contribution of the HMGB1/RAGE, PI3K/AKT, and TGF-beta1/SMAD pathways. Toxicol Appl Pharmacol 432:115757. https://doi.org/10.1016/j.taap.2021.115757

    Article  CAS  PubMed  Google Scholar 

  31. Wei M, Liu J, Xu M, Rui D, Xu S, Feng G, Ding Y, Li S, Guo S (2016) Divergent effects of arsenic on NF-kappaB signaling in different cells or tissues: a systematic review and meta-analysis. Int J Environ Res Public Health 13(2):163. https://doi.org/10.3390/ijerph13020163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wojcik-Krowiranda KM, Forma E, Bienkiewicz A, Cwonda L, Wronska-Stefaniak J, Brys M (2020) TLR family gene expression in relation to the HIF1alpha and the VEGFR pathway activation in endometrial cancer. Ginekol Pol 91(8):439–446. https://doi.org/10.5603/GP.2020.0073

    Article  PubMed  Google Scholar 

  33. Xu M, Rui D, Yan Y, Xu S, Niu Q, Feng G, Wang Y, Li S, Jing M (2016) Oxidative damage induced by arsenic in mice or rats: a systematic review and meta-analysis. Biol Trace Elem Res 176(1):154–175. https://doi.org/10.1007/s12011-016-0810-4

    Article  CAS  PubMed  Google Scholar 

  34. Ye K, Chen QW, Sun YF, Lin JA, Xu JH (2018) Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling. J Cell Biochem 119(2):1922–1930. https://doi.org/10.1002/jcb.26353

    Article  CAS  PubMed  Google Scholar 

  35. Yin L, Yu X (2018) Arsenic-induced apoptosis in the p53-proficient and p53-deficient cells through differential modulation of NFkB pathway. Food Chem Toxicol 118:849–860. https://doi.org/10.1016/j.fct.2018.06.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang P, Yang M, Chen C, Liu L, Wei X, Zeng S (2020) Toll-like receptor 4 (TLR4)/opioid receptor pathway crosstalk and impact on opioid analgesia, immune function, and gastrointestinal motility. Front Immunol 11:1455. https://doi.org/10.3389/fimmu.2020.01455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang RY, Chen CZ, Cheng SQ, Xia YY (2019) Effect and mechanism of cyclooxygenase-2 on sodium arsenic-induced microglia activation in mice. Chin J Public Health 35(07):847–850. https://doi.org/10.11847/zgggws1124161

    Article  Google Scholar 

  38. Zhang XXX, Wang SH, Zhao YH, Gao YR (2018) Effects of sodium arsenite on nuclear factor-κB signaling pathway in human embryonic lung fibroblasts. J Environ Health 35(10):877–880. https://doi.org/10.16241/j.cnki.1001-5914.2018.10.007

    Article  Google Scholar 

  39. Zheng B, Yang Y, Li J, Li J, Zuo S, Chu X, Xu S, Ma D, Chu L (2021) Magnesium isoglycyrrhizinate alleviates arsenic trioxide-induced cardiotoxicity: contribution of Nrf2 and TLR4/NF-kappaB signaling pathway. Drug Des Devel Ther 15:543–556. https://doi.org/10.2147/DDDT.S296405

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhong G, Wan F, Lan J, Jiang X, Wu S, Pan J, Tang Z, Hu L (2021) Arsenic exposure induces intestinal barrier damage and consequent activation of gut-liver axis leading to inflammation and pyroptosis of liver in ducks. Sci Total Environ 788:147780. https://doi.org/10.1016/j.scitotenv.2021.147780

    Article  CAS  PubMed  Google Scholar 

  41. Zhou LF, Zhu Y, Cui XF, Xie WP, Hu AH, Yin KS (2006) Arsenic trioxide, a potent inhibitor of NF-kappaB, abrogates allergen-induced airway hyperresponsiveness and inflammation. Respir Res 7:146. https://doi.org/10.1186/1465-9921-7-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Research Project Supported by Shanxi Scholarship Council of China (grant number 2021–085); Start-up Foundation for Doctors of Shanxi Medical University (grant number 03201523); National nature science foundation of China (grant number 82173644), and Natural Science Foundation of Shanxi [grant number 202103021224242].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Nanxin Ma and Xiaolong WU. The first draft of the manuscript was written by Nanxin Ma and Jian Guo, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi Gao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Guo, J., Wu, X. et al. Meta-analysis of TLR4 pathway-related protein alterations induced by arsenic exposure. Biol Trace Elem Res 201, 3290–3299 (2023). https://doi.org/10.1007/s12011-022-03426-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03426-w

Keywords

Navigation