Skip to main content

Advertisement

Log in

Interaction of Antioxidant Trace Minerals Affecting Blood Picture Including Antioxidant Profile of Healthy Buffalo (Bubalus bubalis) Calves

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper (Cu) and selenium (Se) are antioxidants and essential trace elements that have mutual interaction and are reported to have beneficial effects at supranutritional levels. The experiment was executed to evaluate the individual impact of supranutritional levels of targeted elements with the effect of their interactions in buffalo calves. Twenty male Murrah buffalo calves of about 8–9 months (bodyweight 112.1 ± 7.69 kg) were distributed into four groups of five calves in each group and fed either a control (C) diet or supplemented with supranutritional levels of Cu (T1), Se (T2), or combination of both (T3) for 120 days. Higher (P = 0.015) values of packed cell volume were observed in group T2 at day 120; otherwise, all other hematological parameters remained comparable among groups. Over the period (day 120 vs. day 0), an enhancement in the percentage of lymphocytes (P = 0.006) with a reduction in neutrophils (P = 0.028) and hemoglobin (P = 0.024) values was observed in the control group. An enhancement in the percentage of monocytes (P = 0.031), with a reduced percentage of neutrophils (P = 0.022), was reported in groups T2 and T3, respectively. Interaction of Cu and Se at supranutritional level (T3) dramatically reduced plasma Cu (P = 0.008) level against the control values, with an improvement in Se markers (i.e., plasma Se, P = 0.041 and enzyme glutathione peroxidase, P = 0.057) over the values in calves fed supplemental Se alone (T2). Additionally, Cu (T1 and T3) was forced to decline (P < 0.05) Zn level in the plasma of buffalo calves. Cu (T1, P < 0.05) and Se (T2 and T3, P ≤ 0.01) supplementation was able to improve their respective plasma levels. The interaction of two trace elements at the supranutritional level further helped in reducing the lipid peroxidation (P = 0.01) values as well. Though antioxidant vitamins and cell-mediated immunity remained unaffected, humoral immunity against antigen P. multocida was high (P = 0.005) in the group T2. The conclusion may be drawn that supranutritional Cu and Se were capable to influence certain blood parameters with an additional interaction effect due to simultaneous supplementation in buffalo calves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Basic Animal Husbandry and Fisheries Statistics (2016) Department of animal husbandry, dairying and fisheries Krishi Bhawan, New Delhi, India.

  2. Sabia E, Napolitano F, Claps S, Braghieri A, Piazzolla N, Pacelli C (2015) Feeding, nutrition and sustainability in dairy enterprises: the case of mediterranean buffaloes (Bubalus bubalis). In: Vastola A (ed) The sustainability of agro-food and natural resource systems in the Mediterranean Basin, Springer International Publishing https://doi.org/10.1007/978-3-319-16357-4_5

  3. Shakya A, Roy B, Baghel RPS (2017) Studies on buffalo calf mortality in Jabalpur district of Madhya Pradesh. Buffalo Bull 36:521–524

    Google Scholar 

  4. Singh DD, Kumar M, Choudhary PK, Singh HN (2009) Neonatal calf mortality – an overview. Intas Polivet 10:165–169

    Google Scholar 

  5. Hegde ML, Shanmugavelu P, Vengamma B, Rao TSS, Menon RB, Rao RV, Rao KSJ (2004) Serum trace element levels and the complexity of inter-element relations in patients with Parkinson’s disease. J Trace Elem Med Biol 18:163–171. https://doi.org/10.1016/j.jtemb.2004.09.003

    Article  CAS  Google Scholar 

  6. Liu T, Lu QB, Yan L, Guo J, Feng F, Qiu J, Wang J (2015) Comparative study on serum levels of 10 trace elements in schizophrenia. PLoS ONE 10:e0133622. https://doi.org/10.1371/journal.pone.0133622

    Article  CAS  Google Scholar 

  7. Brenneisen P, Steinbrenner H, Sies H (2005) Selenium, oxidative stress, and health aspects. Mol Asp Med 26:256–267

    Article  CAS  Google Scholar 

  8. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  Google Scholar 

  9. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    Article  CAS  Google Scholar 

  10. Liu T, Yang T, Pan T, Liu C, Li S (2017) Effect of low-selenium/high-fat diet on pig peripheral blood lymphocytes: perspectives from selenoproteins, Heat shock proteins, and cytokines. Biol Trace Elem Res 183:102–113. https://doi.org/10.1007/s12011-017-1122-z

    Article  CAS  Google Scholar 

  11. Verma P, Kunwar A, Indira Priyadarsini K (2017) Effect of low-dose selenium supplementation on the genotoxicity, tissue injury, and survival of mice exposed to acute whole-body irradiation. Biol Trace Elem Res 179:130. https://doi.org/10.1007/s12011-017-0955-9

    Article  CAS  Google Scholar 

  12. Ghazi S, Habibian M, Moeini MM, Abdolmohammadi AR (2012) Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biol Trace Elem Res 148:322–330

    Article  Google Scholar 

  13. Habibian M, Ghazi S, Moeini MM, Abdolmohammadi A (2014) Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int J Biometeorol 58:741–752

    Article  Google Scholar 

  14. Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 128:80–97. https://doi.org/10.1016/j.freeradbiomed.2018.05.001

    Article  CAS  Google Scholar 

  15. Neamat-Allah ANF, Mahmoud EA, Hakim YAE (2019) Efficacy of dietary nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection. Fish Shellfish Immunol 94:280–287. https://doi.org/10.1016/j.fsi.2019.09.019

    Article  CAS  Google Scholar 

  16. Zeng H, Botnen JH (2004) Copper may interact with selenite extracellularly in cultured HT-29 cells. J Nutr Bioc 15:179–184

    Article  CAS  Google Scholar 

  17. Wischhusen P, Larroquet L, Durand T, Oger C, Galano J, Rocher A, Vigor C, Prabhu PJA, Véron V, Briens M, Roy J, Kaushik SJ, Fauconneau B, Fontagné-Dicharry S (2020) Oxidative stress and antioxidant response in rainbow trout fry exposed to acute hypoxia is affected by selenium nutrition of parents and during first exogenous feeding. Free Radic Biol Med 155:99–113. https://doi.org/10.1016/j.freeradbiomed.2020.05.006

    Article  CAS  Google Scholar 

  18. Harris ED, Blount JE, Leach RM (1980) Localization of lysyl oxidase in hen oviduct: implications in eggshell membrane formation and composition. Sci 208:55–56

    Article  CAS  Google Scholar 

  19. Davis CD (2000) Newman S. Inadequate dietary copper increases tumorigenesis in the Min mouse. Cancer Lett 159:57–62

    Article  CAS  Google Scholar 

  20. Aydemir T, Öztürk R, Bozkaya LA, Tarhan L (2000) Effects of antioxidant vitamins A, C, E and trace elements Cu, Se on Cu-Zn SOD, GSH-Px, CAT and LPO levels in chicken erythrocytes. Cell Biochem Funct 18:109–115

    Article  CAS  Google Scholar 

  21. Twomey PJ, Viljoen A, House IM, Reynolds TM, Wierzbicki AS (2005) Relationship between serum copper, ceruloplasmin, and non-ceruloplasmin-bound copper in routine clinical practice. Clin Chem 51:1558–1559

    Article  CAS  Google Scholar 

  22. Engelking LR (2004) Vitamins and trace elements. In: Cann C (ed) Textbook of veterinary physiological chemistry. Jackson WY, Teton New Media, pp 280–284.

  23. Hosseini S, Arshami J, Torshizi ME (2011) Viral antibody titer and leukocyte subset responses to graded copper and zinc in broiler chicks. Asian J Anim Vet Adv 6:80–87

    Article  CAS  Google Scholar 

  24. Aaseth J, Ringstad J (1991) Synergism, and antagonism of different elements in relation to selenium and cadmium. In: Lag J (ed) Human and animal health in relation to circulation processes of selenium and cadmium. Det Norske Videnskaps-Akademi, Oslo, Norway, pp 29–46.

  25. Davis RL, Spallholz JE, Pence BC (1998) Inhibition of selenite-induced cytotoxicity and apoptosis in human colonic carcinoma (HT-29) cells by copper. Nutr Cancer 32:181–189

    Article  CAS  Google Scholar 

  26. Isei MO, Kamunde C (2020) Effects of copper and temperature on heart mitochondrial hydrogen peroxide production. Free Radic Biol Med 147:114–128. https://doi.org/10.1016/j.freeradbiomed.2019.12.006

    Article  CAS  Google Scholar 

  27. Tatum L, Shankar P, Boylan LM, Spallholz JE (2000) Effect of dietary copper on selenium toxicity in Fischer 344 rats. Biol Trace Elem Res 77:241–249

    Article  CAS  Google Scholar 

  28. Dougherty JJ, Hoekstra WG (1982) Effects of vitamin E and selenium on copper-induced lipid peroxidation in vivo and on acute copper toxicity. Proc Soc Exp Biol Med 169:201–208

    Article  CAS  Google Scholar 

  29. Pal A (2015) Role of copper and selenium in reproductive biology: a brief update. Biochem Pharmacol (Los Angel) 4:181. https://doi.org/10.4173/2167-0501.1000181

    Article  Google Scholar 

  30. Leal MLdR, Pivoto FL, Fausto GC, Aires AR, Grando TH, Roos DH, Sudati JH, Wagner C, Costa MM, Molento MB, Rocha JBTd (2014) Copper and selenium: auxiliary measure to control infection by Haemonchus contortus in lambs. Exp Parasitol 144:39–43

    Article  CAS  Google Scholar 

  31. Pathak NN, Verma DN (1993) Nutrient requirement of buffalo. 1st ed. International Book Distributing Corporation, Lucknow, Uttar Pradesh, India.

  32. AOAC (2005) Official methods of analysis. 18th ed. Association of Official Analytical Chemists, Arlington, VA, USA.

  33. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  Google Scholar 

  34. Talapatra SK, Ray SN, Sen KC (1940) Estimation of phosphorus, chlorine, calcium, magnesium, sodium and potassium in foodstuffs. Indian J Vet Sci Anim Husb 10:243–246

    CAS  Google Scholar 

  35. Mudgal V, Garg AK, Dass RS, Rawat M (2019) Supra-nutritional copper influences blood parameters including antioxidant markers and immune response in Murrah buffalo (Bubalus bubalis) calves. Livest Sci 225:15–25. https://doi.org/10.1016/j.livsci.2019.04.019

    Article  Google Scholar 

  36. Jain MC (1986) Veterinary hematology. 4th ed. Lea and Febiger, Philadelphia.

  37. Chawla R, Kaur H (2001) Isocratic HPLC method for simultaneous determination of β-carotene, retinol and α-tocopherol in feeds and blood plasma. Indian J Dairy Sci 54:84–90

    CAS  Google Scholar 

  38. Rajiv (1997) Influence of dietary β-carotene on its utilization in growing crossbred calves. MSc Thesis, NDRI Deemed University, Karnal, India.

  39. Yagi K, Nishigaki I, Ohama H (1968) Vitamins 37:105

    CAS  Google Scholar 

  40. Prins L (1969) Biochemical methods in red cell genetics. Academic Press, pp127–129.

  41. Bergmeyer HU (1983) U.V. method of catalase assay. In: Methods of enzymatic analysis, Vol, 3rd, Weinheim, Deer field Beach, Florida, p 273.

  42. Madesh M, Balasubramaniam KA (1998) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochemistry and Biophysics 35:184–188

    CAS  Google Scholar 

  43. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  44. Yagi Y, Furunchi S, Takashi H, Koyama H (1989) Abnormality of osmotic fragility and morphological disorder of bovine erythrocytes infected with Theileria sergenti. Japan J Vet Sci 51:389–395

    Article  CAS  Google Scholar 

  45. Sunderman FW, Nomoto S (1970) Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin Chem 16:903–910

    Article  CAS  Google Scholar 

  46. Mudgal V, Garg AK, Dass RS, Rawat M (2018) Selenium and copper interaction at supra-nutritional level affecting blood parameters including immune response against P. multocida antigen in Murrah buffalo (Bubalus bubalis) calves. J Trace Elem Med Biol 50:415–423. https://doi.org/10.1016/j.jtemb.2018.08.008

    Article  CAS  Google Scholar 

  47. National Research Council (2001) Nutrient requirements of dairy cattle. 7th revised ed. National Academy of Science, Washington, DC.

  48. Rabiansky PA, McDowell LR, Velasquez- Pereira J, Wilkinson NS, Percival SS, Martin FG, Bates DB, Johnson AB, Batra TR, Salgado-Madriz E (1999) Evaluating copper-lysine and copper-sulfate sources for heifers. J Dairy Sci 82:2642–2650

    Article  CAS  Google Scholar 

  49. Datta C, Mondal MK, Biswas P (2007) Influence of dietary inorganic and organic form of copper salt on performance, plasma lipids and nutrient utilization of Black Bengal (Capra hircus) goat kids. Anim Feed Sci Technol 135:191–209

    Article  CAS  Google Scholar 

  50. Hosienpour N, Norouzian MA, Afzalzadeh A, Khadem AA, Alamouti AA (2014) Source of copper may have regressive effects on serum cholesterol and urea nitrogen among male fattening Lambs. Biol Trace Elem Res 159:147–151. https://doi.org/10.1007/s12011-014-0004-x

    Article  CAS  Google Scholar 

  51. Kumar K, Bhatia KC, Sasana JR (1989) Hematological studies on experimental selenium toxicity in buffalo calves. Indian J Anim Nutr 6:52–55

    Google Scholar 

  52. Buckley WT, Hucklin SN, Fisher IJ, Eigendorf GK (1986) Effects of selenium supplementation on copper metabolism in dairy cows. Can J Anim Sci 66:1009–1018

    Article  CAS  Google Scholar 

  53. Shashidhar G, Prasad T (1993) Influence of selenite and selenomethionine administration on serum transaminases and hematology of goats. Indian J Anim Nutr 10:1–6

    Google Scholar 

  54. Fehrs MS, Miller WJ, Gentry RP, Neathery MW, Blackmon DM, Heinmiller SR (1981) Effect of high but non-toxic dietary intake of copper and selenium on metabolism in calves. J Dairy Sci 64:1700–1706

    Article  CAS  Google Scholar 

  55. Gengelbach GP, Ward JD, Spears JW (1994) Effect of dietary copper, iron, and molybdenum on growth and copper status of beef cows and calves. J Anim Sci 72:2722–2727

    Article  CAS  Google Scholar 

  56. Gengelbach GP, Ward JD, Spears JW, Brown TT Jr (1997) Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge. J Anim Sci 75:1112–1118

    Article  CAS  Google Scholar 

  57. Larsen HJ, Overnes G, Moksnes K (1988) Effect of selenium on sheep lymphocyte responses to mitogens. Res Vet Med 45:11–15

    CAS  Google Scholar 

  58. Patel MD, Lateef A, Das H, Patel AS, Patel AG, Joshi AB (2016) Effect of age, sex and physiological stages on hematological indices of Banni buffalo (Bubalus bubalis). Vet World 9: 38–42. https://doi.org/10.14202/vetworld.2016.38-42.

  59. Arthur JR, Mckenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457–1459

    Article  Google Scholar 

  60. Nampoothiri VM, Ganga Devi P (2017) Selenium for calf growth and health: mini review. Int J Livest Res 7:1–10. https://doi.org/10.5455/ijlr.20170212032834

    Article  Google Scholar 

  61. Mullis LA, Spears JW, McCraw RL (2003) Estimated copper requirements of Angus and Simmental heifers. J Anim Sci 81:865–873

    Article  CAS  Google Scholar 

  62. Dorton KL, Engle TE, Hamar DW, Siciliano PD, Yemm RS (2003) Effects of copper source and concentration on copper status and immune function in growing and finishing steers. Anim Feed Sci Technol 110:31–44

    Article  CAS  Google Scholar 

  63. Amer MA, Laurent GJSt, Brisson GJ (1972) Supplemental copper and selenium for calves: effects upon ceruloplasmin activity and liver copper concentration. Can J Physiol Pharmacol 51:649–653.

  64. Koh TS, Judson GJ (1987) Copper and selenium deficiency in cattle: an evaluation of methods of oral therapy and observation of a copper-selenium interaction. Vet Res Commun 11:133–148

    Article  CAS  Google Scholar 

  65. Netto AS, Zanetti MA, Claro GR, De Melo MP, Vilela FG, Correa LB (2014) Effects of copper and selenium supplementation on performance and lipid metabolism in confined Brangus bulls. Asian-Australas J Anim Sci 27:488–494

    Article  CAS  Google Scholar 

  66. McDowell LR (1992) Minerals in animal and human nutrition. Academic Press, New York, p 524

    Google Scholar 

  67. Brisola ML (2000) Efeitos de níveis crescentes de enxofre na dieta de cordeiros submetidos a nível tóxico de selênio. Tese (Doutorado em Zootecnia)- Faculdade de Ciências Farmacêuticas/Universidade de São Paulo, São Paulo 89f.

  68. Netto AS, Zanetti MA, Claro GR, Vilela FG, De Melo MP, Correa LB (2013) Pugine SMP (2013) Copper and selenium supplementation in the diet of Brangus steers on the nutritional characteristics of meat. R Bras Zootec 42:70–75

    Article  Google Scholar 

  69. Ivancic J Jr, Weiss WP (2001) Effect of dietary sulfur and selenium concentrations on selenium balance of lactating Holstein cows. J Dairy Sci 84:225–232

    Article  CAS  Google Scholar 

  70. Kumar N, Garg AK, Dass RS, Chaturvedi VK, Mudgal V, Varshney VP (2009) Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Anim Feed Sci Technol 153:77–87

    Article  CAS  Google Scholar 

  71. McChowell J, Gawthorne JM (1985) Cooper in animals and man. CRC Press, Boca Raton, pp 101–119

    Google Scholar 

  72. Deol HS, Howell JM, Dorling PR (1994) Effect of the ingestion of heliotrope and copper on the concentration of zinc, selenium and molybdenum in the liver of sheep. J Comp Pathol 110:303–307

    Article  CAS  Google Scholar 

  73. Van Ryssen JBJ, Van Malsen PSM, Hartmann F (1998) Contribution of dietary sulfur to the interaction between selenium and copper in sheep. J Agric Sci 130:107–114

    Article  Google Scholar 

  74. Netto AS, Zanetti MA, Correa LB, Del-Claro GR, Salles MSV, Vilela FG (2014) Effects of dietary selenium, sulfur and copper levels on selenium concentration in the serum and liver of lamb. Asian-Australas J Anim Sci 27:1082–1087

    Article  CAS  Google Scholar 

  75. Brzozowska A (1989) Interaction of iron, zinc and copper in the body of animals and humans. Rocz Panstw Zakl Hig 40:302–312

    CAS  Google Scholar 

  76. Hernández-Meléndez J, Salem AZM, Sánchez-Dávila F, Rojo R, Limas AG, López-Aguirre D, Vázquez-Armijo JF (2015) Effect of copper and zinc supplementation on growth, blood serum copper and zinc levels, scrotal circumference and semen quality in growing male Boer × Nubian bucks. Life Sci J 12:108–112

    Google Scholar 

  77. Engle TE, Spears JW (2000) Dietary copper effects on lipid metabolism, performance and ruminal fermentation in finishing steers. J Anim Sci 78:2452–2458

    Article  CAS  Google Scholar 

  78. Slebodzinska BE, Miller JK, Quigley JD, Moore JR, Madsen FC (1994) Antioxidant status of dairy cows supplemented prepartum with vitamin E and selenium. J Dairy Sci 77:3087–3095

    Article  Google Scholar 

  79. Reddy BS, Mahadevan V (1977) Effect of copper on hematology and production in lactating cows. Indian Vet J 54:561–565

    CAS  Google Scholar 

  80. Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M (2015) T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med 212:555–568

    Article  CAS  Google Scholar 

  81. Kaur R, Sharma S, Rampal S (2003) Effect of sub-chronic selenium toxicosis on lipid peroxidation, glutathione redox cycle and antioxidative enzymes in calves. Vet Human Toxicol 45:190–192

    CAS  Google Scholar 

  82. Wang Y, Yang HM, Cao W, Li YB (2017) Effect of selenium supplementation on pigeon reproductive performance, selenium concentration, and antioxidant status. Poult Sci 96:3407–3413. https://doi.org/10.3382/ps/pex121

    Article  CAS  Google Scholar 

  83. Carroll L, Gardiner K, Ignasiak M, Holmehave J, Shimodaira S, Breitenbach T, Iwaoka M, Ogilby PR, Pattison DI, Davies MJ (2020) Interaction kinetics of selenium-containing compounds with oxidants. Free Radic Biol Med 155:58–68

    Article  CAS  Google Scholar 

  84. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock. 3rd ed. CABI Publication, New York

  85. Cheng JMa, Fan H, Zhang C, Jia Z, Zhu X, Wang L (2011) Effects of different copper sources and levels on plasma superoxide dismutase, lipid peroxidation, and copper status of lambs. Biol Trace Elem Res 144:570–579. https://doi.org/10.1007/s12011-011-9065-2

    Article  CAS  Google Scholar 

  86. Garcia-Vaquero M, Benedito JL, Lopez-Alonso M, Miranda M (2012) Histochemistry evaluation of the oxidative stress and the antioxidant status in Cu-supplemented cattle. Animal 6:1435–1443. https://doi.org/10.1017/S1751731112000535

    Article  CAS  Google Scholar 

  87. Percival SS, Harris ED (1990) Copper transport from ceruloplasmin: characterization of the cellular uptake mechanism. Am J Physiol 258 (Cell Physiol 27): C140-C146

  88. Ward JD, Spears JW, Kegley EB (1993) Effect of copper level and source (copper lysine vs. copper sulfate) on copper status performance and immune response in growing steers fed diets with or without supplemental molybdenum, and sulfur. J Anim Sci 71:2748–2755

    Article  CAS  Google Scholar 

  89. Zhang W, Zhang Y, Zhang SW, Song XZ, Jia ZH, Wang RL (2012) Effect of different levels of copper and molybdenum supplements on serum lipid profiles and antioxidant status in cashmere goats. Biol Trace Elem Res 148:309–315. https://doi.org/10.1007/s12011-012-9380-2

    Article  CAS  Google Scholar 

  90. Kegley EB, Spears JW (1994) Bioavailability of feed-grade copper sources (oxide, sulfate, or lysine) in growing cattle. J Anim Sci 72:2728–2734

    Article  CAS  Google Scholar 

  91. Lum GE, Rowntree JE, Bondioli KR, Southern LL, Williams CC (2009) The influence of dietary selenium on common indicators of selenium status and liver glutathione peroxidase-1 messenger ribonucleic acid. J Anim Sci 87:1739–1746

    Article  CAS  Google Scholar 

  92. Moghadaszadeh B, Beggs AH (2006) Selenoproteins and their impact on human health through diverse physiological pathways. Physiol 21:307–315

    Article  CAS  Google Scholar 

  93. Forgione MA, Weiss N, Heydrick S, Cap A, Klings ES, Bierl C, Eberhardt RT, Farber HW, Loscalzo J (2002) Cellular glutathione peroxidase deficiency and endothelial dysfunction. Am J Physiol Heart Circ Physiol 282:H1255–H1261

    Article  CAS  Google Scholar 

  94. Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68:26–36

    Article  CAS  Google Scholar 

  95. Faraci FM (2006) Hydrogen peroxide: watery fuel for change in vascular biology. Arterioscler Thromb Vasc Biol 26:1931–1933

    Article  CAS  Google Scholar 

  96. Jelicks LA, de Souza AP, Araujo-Jorge TC, Tanowitz HB (2011) Would selenium supplementation aid in therapy for Chagas disease? Trends Parasitol 27:102–105

    Article  CAS  Google Scholar 

  97. Ward JD, Spears JW (1999) The effects of low-copper diets with or without supplemental molybdenum on specific immune responses of stressed cattle. J Anim Sci 77:230–237

    Article  CAS  Google Scholar 

  98. Craig TJ, Solaiman SG, Reddy G, Hopkins CE (2003) Effect of high dietary copper on growth performance, rumen fermentation and immune response in goat kids (Abstract). J Anim Sci 81: (S 2), 24.

  99. Stable JR, Spears JW, Brown TT (1993) Effect of copper deficiency on tissue, blood characteristics and immune function of calves challenged with the infectious bovine rhinotracheitis virus and Pasteurella hemolytica. J Anim Sci 71:1247–1255

    Article  Google Scholar 

  100. Hoffmann PR (2007) Mechanisms by which selenium influences immune responses. Arch Immunol Ther Exp 55:289–297

    Article  CAS  Google Scholar 

  101. Swecker WS Jr, Eversole DE, Thatcher CD, Blodgett DJ, Schuring GG, Meldrum JB (1989) Influence of supplemental selenium on the humoral immune response in weaned beef calves. Am J Vet Res 50:1760–1763

    CAS  Google Scholar 

  102. Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176:70–76

    Article  CAS  Google Scholar 

  103. Sordillo LM (2013) Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet Med Int 2013; Article ID 154045:1–8. https://doi.org/10.1155/2013/154045.

  104. Eze JI, Ngene AA, Anosa GN, Ezeh IO (2011) Immunomodulatory effect of dietary selenium supplementation on serum antibody response and leukocytic profile of Trypanosoma brucei brucei infected rats. Afr J Biotech 10:12038–12106

    Google Scholar 

  105. Hall JA, Vorachek WR, Stewart WC, Gorman ME, Mosher WD, Pirelli GJ, Bobe G (2013) Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS ONE 8(12):e82572. https://doi.org/10.1371/journal.pone.0082572

    Article  CAS  Google Scholar 

  106. Steinbrenner H, Al-Quraishy S, Dkhil MA, Wunderlich F, Sies H (2015) Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr 6:73–82

    Article  CAS  Google Scholar 

  107. Hall JA, Harwell AM, Van Saun RJ, Vorachek WR, Stewart WC, Galbraith ML, Hooper KJ, Hunter JK, Mosher WD, Pirelli GJ (2011) Agronomic biofortification with selenium: effects on whole blood selenium and humoral immunity in beef cattle. Anim Feed Sci Technol 164:184–190

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows: V. M. conducted the research, performs laboratory and data analyses, and wrote the manuscript; M. R. performed the laboratory analysis of cell-mediated immune response. A.K.G. and R.S.D. guided the study and all authors designed the research and read and approved the final manuscript.

Corresponding author

Correspondence to Vishal Mudgal.

Ethics declarations

Ethics Approval

Animal experimentation was conducted following the Institutional Animal Ethical Committee guidelines being supervised by Indian CPCSEA.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudgal, V., Garg, A.K., Dass, R.S. et al. Interaction of Antioxidant Trace Minerals Affecting Blood Picture Including Antioxidant Profile of Healthy Buffalo (Bubalus bubalis) Calves. Biol Trace Elem Res 201, 156–169 (2023). https://doi.org/10.1007/s12011-022-03122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03122-9

Keywords

Navigation