Skip to main content
Log in

The Impact of Iodine Exposure in Excess on Hormonal Aspects and Hemato-Biochemical Profile in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Excessive exposure of iodine over a time is well known to cause thyroid dysfunction, which may be followed by different effects on body organs. The present study aimed to illustrate the impacts of exposure of rats to excess iodine (above the tolerable range) and the reversibility of any negative impacts on hormonal profile related to thyroid besides cortisol and the hematological and biochemical parameters along with the histopathological alterations in the thyroid gland, liver, kidneys, and heart. Seventy-five rats were divided equally into three groups: Group 1 was control animals. Groups 2 and 3 received sodium iodide (NaI) orally at a dose of (35 and 70 mg/kg BW), which corresponded to (500 and 1000) times excess iodine from the physiological dose, respectively for 30 days, then the NaI administration stopped in the treated groups for 15 consecutive days. Blood and tissue samples were collected twice for various experimental tests after 30 and 15 days of exposure to excess iodine and stopping the exposure, respectively. Overall results revealed that excess iodine in both tested groups developed a hyperthyroid condition, hypercortisolism, relative polycythemia, neutropenia, elevation in serum liver and cardiac enzymes activities, hyperprotenemia, hyperglobulinemia, elevation in serum urea, and cardiac troponin I concentrations (p < 0.05). It was concluded that the excess iodine caused hyperthyroidism, which was associated with significant changes in erythrogram and leukogram and alterations in hepatic, renal, and cardiac functions in an iodine dose-dependent damage relationship and the most of negative impacts continued after stopping the administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heyland A, Moroz LL (2005) Cross-kingdom hormonal signaling: an insight from thyroid hormone functions in marine larvae. J Exp Biol 208:4355–4361. https://doi.org/10.1242/jeb.01877

    Article  CAS  PubMed  Google Scholar 

  2. Patrick L (2008) Iodine: deficiency and therapeutic considerations. Altern Med Rev 13:116–127

    PubMed  Google Scholar 

  3. Laurberg P, Pedersen IB, Knudsen N, Ovesen L, Andersen S (2001) Environmental iodine intake affects the type of non-malignant thyroid disease. Thyroid 11(5):457–469. https://doi.org/10.1089/105072501300176417

    Article  CAS  PubMed  Google Scholar 

  4. Delange F, Lecomte P (2000) Iodine supplementation: benefits outweigh risks. Drug Saf 22:89–95. https://doi.org/10.2165/00002018-200022020-00001

    Article  CAS  PubMed  Google Scholar 

  5. Liu D, Lin X, Yu F, Zhang M, Chen H, Bao W, Wang X (2015) Effects of 3,5-diiodotyrosine and potassium iodide on thyroid function and oxidative stress in iodine-excess Wistar rats. Biol Trace Elem Res 168(2):44752. https://doi.org/10.1007/s12011-015-0371-y

    Article  CAS  Google Scholar 

  6. Luo Y, Kawashima A, Ishido Y, Yoshihara A, Oda K, Hiroi N, Ito T, Ishii N, Suzuki K (2014) Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int J Mol Sci 15:12895–12912. https://doi.org/10.3390/ijms150712895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Georgitis WJ, McDermott MT, Kidd GS (1993) An iodine load from water-purification tablets alters thyroid function in humans. Mil Med 158:794–797. https://doi.org/10.1093/milmed/158.12.794

    Article  CAS  PubMed  Google Scholar 

  8. Zhao J, Chen Z, Maberly G (1998) Iodine-rich drinking water of natural origin in China. Lancet 352:2024. https://doi.org/10.1016/S0140-6736(05)61375-X

    Article  CAS  PubMed  Google Scholar 

  9. Franke K, Meyer U, Wagner H, Flachowsky G (2009) Influence of various iodine supplementation levels and two different iodine species on the iodine content of the milk of cows fed rapeseed meal or distillers dried grains with solubles as the protein source. J Dairy Sci 92:4514–4523. https://doi.org/10.3168/jds.2009-2027

    Article  CAS  PubMed  Google Scholar 

  10. Paulíková I, Kováč G, Bíreš J, Paulík Š, Seidel H, Nagy O (2002) Iodine toxicity in ruminants. Vet Med -Czech 47(12):343–350. https://doi.org/10.17221/5845-VETMED

    Article  Google Scholar 

  11. William W (2008) Mineral tolerances of Animals. Tri-State Dairy Nutr Conf

  12. Soetan K, Olaiya CO, Oyewole OE (2009) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4(5):200–222

    Google Scholar 

  13. Goa TS, Hu FN, Teng WP (2003) Effect of mild and moderate excessive iodine supplementation on thyroid function and morphology in non-iodine deficiency rat model. Zhonghua Nei Ke Za Zhi 42(10):705–708

    Google Scholar 

  14. Food Standards Australia New Zealand (FSANZ) (2008) Final assessment report-proposal P230: consideration of mandatory fortification with iodine for New Zealand. Food Standards Australia New Zealand, Wellington

    Google Scholar 

  15. Burgi H (2010) Iodine excess. Best Pract Res Clin Endocrinal 24:107–115. https://doi.org/10.1016/j.beem.2009.08.010

    Article  CAS  Google Scholar 

  16. Rose HR, Zulfiqar H (2021) Jod Basedow syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

  17. Shahid MA, Ashraf MA, Sharma S (2020) Physiology, thyroid hormone. In: StatPearls. Treasure Island (FL): StatPearls Publishing.

  18. NRC (1995) Nutrient requirements of laboratory animals, 4th edn. National Academy Press, Washington DC

    Google Scholar 

  19. Lupachik SV, Nadol'nik LI, Netsetskaya ZV, Vinogradov VV (2006) Effects of chronic administration of high doses of potassium iodide on iodine metabolism in the rat thyroid gland. Biomed Khim 52(2):161–168

    CAS  PubMed  Google Scholar 

  20. Clayton GD, Clayton FE (1981) In: Patty’s industrial toxicology and hygiene. Clayton GD and Clayton FE (eds.), 3rd edn. Vol 2B, p 2975

  21. Chakraborty A, Mandal J, Mondal C, Sinha S, Chandra AK (2016) Effect of excess iodine on oxidative stress markers, steroidogenic-enzyme activities, testicular morphology, and functions in adult male rats. Biol Trace Elem Res 172(2):380–394. https://doi.org/10.1007/s12011-015-0581-3

    Article  CAS  PubMed  Google Scholar 

  22. Suvarna KS, Layton C, Bancroft JD (2013) Bancroft’s theory and practice of histological techniques, 7th edn. Churchill Livingstone Elsevier, China

    Google Scholar 

  23. Snedecor GW, Cochran WG (1994) Statistical method, 8th edn. Iowa State University Press, Ames

    Google Scholar 

  24. Norman AW, Litwack G (1996) Thyroid hormones. In: Norman AW, Litwack G (eds) Hormones, 2nd edn. Academic Press, pp 169–191. https://doi.org/10.1016/B978-012521441-4/50007-9

  25. Sarkar D, Chakraborty A, Saha A, Chandra AK (2018) Iodine in excess in the alterations of carbohydrate and lipid metabolic pattern as well as histomorphometric changes in associated organs. J Basic Clin Physiol Pharmacol 29(6):631–643. https://doi.org/10.1515/jbcpp-2017-0204

    Article  CAS  PubMed  Google Scholar 

  26. Brent GA (2010) Thyroid function testing. Springer, NY. https://doi.org/10.1007/978-1-4419-1485-9

    Book  Google Scholar 

  27. Fitzgerald SP, Bean NG (2018) Thyroid stimulating hormone (TSH) autoregulation reduces variation in the TSH response to thyroid hormones. Temperature 5(4):380–389. https://doi.org/10.1080/23328940.2018.1513110

    Article  Google Scholar 

  28. Welsh KJ, Soldin SJ (2016) How reliable are free thyroid and total T3 hormone assays? Eur J Endocrinol 175(6):R255–R263. https://doi.org/10.1530/EJE-16-0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Willis GC (2014) Endocrine and metabolic emergencies, an issue of emergency medicine clinics of North America. Volume 32, Number 2. Elsevier, Philadelphia. https://doi.org/10.1016/j.emc.2014.03.001

    Book  Google Scholar 

  30. Fradkin JE, Wolff J (1983) Iodide induced thyrotoxicosis. Medicine 62:1. https://doi.org/10.1097/00005792-198301000-00001

    Article  CAS  PubMed  Google Scholar 

  31. Christiansen JJ, Djurhuus CB, Gravholt CH, Iversen P, Christiansen JS, Schmitz O, Weeke J, Jørgensen JOL, Møller N (2007) Effects of cortisol on carbohydrate, lipid and protein metabolism: studies of acute cortisol withdrawal in adrenocortical failure. J Clin Endocrinol Metab 92:3553–3559. https://doi.org/10.1210/jc.2007-0445

    Article  CAS  PubMed  Google Scholar 

  32. Samidurai M, Kang H, Ramasamy VS, Jo J (2018) Impact of electrical stimulation on cortisol secretion in rat adrenal gland. BioChip J 12(3):216–221. https://doi.org/10.1007/s13206-017-2303-8

    Article  CAS  Google Scholar 

  33. Johnson EO, Kamilaris TC, Calogero AE, Gold PW, Chrousos GP (2005) Experimentally induced hyperthyroidism is associated with activation of the rat hypothalamic-pituitary-adrenal axis. Eur J Endocrinol 153(1):177–185. https://doi.org/10.1530/eje.1.01923

    Article  CAS  PubMed  Google Scholar 

  34. Yashchenko A, Lutsyk S (2018) The influence of hypo- and hyperthyroidism on morphogenesis and histophysiology of adrenal glands. J Embryol Stem Cell Res 2(1):000107. https://doi.org/10.23880/JES-16000107

    Article  Google Scholar 

  35. Suckow MA, Stevens KA, Wilson RP (2012) The laboratory rabbit, guinea pig, hamster, and other rodents, 1st edn. Academic press, Elsevier, San Diego, USA

    Google Scholar 

  36. Kandir S, Keskin E (2016) Effects of hypothyroidism and hyperthyroidism on hematological parameters in rats. Ankara Üniv Vet Fak Derg 63:371–376. https://doi.org/10.1501/Vetfak_0000002755

    Article  Google Scholar 

  37. Díaz-Soto G (2014) Thyroid disorders: focus on hyperthyroidism. Rijeka, Croatia

    Book  Google Scholar 

  38. Braverman LE, Cooper DS (2013) Werner and ingbar’s the thyroid: a fundamental and clinical text, 10th edn. Lippincott Williams and Wilkins, Philadelphia. https://doi.org/10.5772/57001

    Book  Google Scholar 

  39. Eakin DL, Peake RL, Weiss GB (1983) Effect of therapy on the neutropenia of hyperthyroidism. South Med J 76(3):335–337. https://doi.org/10.1097/00007611-198303000-00017

    Article  CAS  PubMed  Google Scholar 

  40. Burrow GN, Oppenheimer JH, Volpe R (1990) Thyroid function and disease. W.B. Saunders Company, Philadelphia

    Google Scholar 

  41. Malik R, Hodgson H (2002) The relationship between the thyroid gland and the liver. QJM-Int J Med 95(9):559–569. https://doi.org/10.1093/qjmed/95.9.559

    Article  CAS  Google Scholar 

  42. Ajayi AF, Akhigbe RE (2012) Implication of altered thyroid state on liver function. Thyroid Res Pract 9:84–87. https://doi.org/10.4103/0973-0354.99649

    Article  Google Scholar 

  43. Arika WM, Nyamai DW, Osano KO, Ngugi MP, Njagi ENM (2016) Biochemical markers of in vivo hepatotoxicity. J Clin Toxicol 6:297

    Google Scholar 

  44. Upadhyay G, Singh R, Kumar A, Kumar S, Kapoor A, Godbole M (2004) Severe hyperthyroidism induces mitochondria-mediated apoptosis in rat liver. Hepatology 39:1120–1130. https://doi.org/10.1002/hep.20085

    Article  PubMed  Google Scholar 

  45. Kumar A, Sinha RA, Tiwari M, Singh R, Koji T, Manhas N, Rastogi L, Pal L, Shrivastava A, Sahu RP, Godbole M (2007) Hyperthyroidism induces apoptosis in rat liver through activation of death receptor-mediated pathways. Mayo Clin 46(5):888–898. https://doi.org/10.1016/j.jhep.2006.12.015

    Article  CAS  Google Scholar 

  46. Kim SM, Kim SC, Chung IK, Cheon WH, Ku SK (2012) Antioxidant and protective effects of bupleurum falcatum on the l-thyroxine-induced hyperthyroidism in rats. Evid Based Complement Alternat Med 2012:1–12. https://doi.org/10.1155/2012/578497

    Article  Google Scholar 

  47. Suckow MA, Weisbroth SH, Franklin CL (2006) The laboratory rat, 2nd edn. Elsevier, Boston

    Google Scholar 

  48. Tothova C, Nagy O, Kovac G (2016) Serum proteins and their diagnostic utility in veterinary medicine: a review. Vet Med 61(9):475–496. https://doi.org/10.17221/19/2016-VETMED

    Article  Google Scholar 

  49. Eckersall PD (2008) Proteins, proteomics, and the dysproteinemias. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals, 6th edn. Elsevier Academic Press, California. https://doi.org/10.1016/B978-0-12-370491-7.00005-2

    Chapter  Google Scholar 

  50. Wudeveld PGAB, Jansen AP (1960) Renal concentrating and water-excreting capacity in hyperthyroidism. Clinica Chimica Acta 5:618–621. https://doi.org/10.1016/0009-8981(60)90002-4

    Article  Google Scholar 

  51. Mariotti S, Caturegli P, Barbesino G, Del Prete GF, Chiovato L, Pinchera A (1991) Circulating soluble interleukin 2 receptor concentration is increased in both immunogenic and nonimmunogenic hyperthyroidism. J Endocrinol Invest 14:777–781. https://doi.org/10.1007/BF03347915

    Article  CAS  PubMed  Google Scholar 

  52. Nandakumara DN, Konera BC, Vinayagamoorthia R, Nandaa N, Negib VS, Goswamia K, Bobbya Z, Hamide A (2008) Activation of NF-jB in lymphocytes and increase in serum immunoglobulin in hyperthyroidism: possible role of oxidative stress. Immunobiology 213:409–415. https://doi.org/10.1016/j.imbio.2007.10.005

    Article  CAS  Google Scholar 

  53. Müller MJ, Seitz H (1984) Thyroid hormone action on intermediary metabolism. Part III. Protein metabolism in hyper-and hypothyroidism. Klin Wochenschr 62:97–102. https://doi.org/10.1007/BF01738699

    Article  PubMed  Google Scholar 

  54. Thrall MA, Weiser G, Allison RW, Campbell TW (2012) Veterinary hematology and clinical chemistry, 2nd edn. John Wiley & Sons, Iowa

    Google Scholar 

  55. Birchard SJ, Sherding RG (2006) Saunders manual of small animal practice, 3rd edn. Saunders, Elsevier, Missouri, USA

    Google Scholar 

  56. Basu G, Mohapatra A (2013) Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab 16(2):204–213. https://doi.org/10.4103/2230-8210.93737

    Article  CAS  Google Scholar 

  57. Turakulov Ya K (1975) Thyroid hormones: biosynthesis, physiological effects, and mechanisms of action, 1st edn. Springer, NY

    Book  Google Scholar 

  58. Loeb JN (1978) Metabolic changes: vitamin metabolism, renal function, body water and electrolytes. In: Werner SC, Ingbar SH (eds) The thyroid. Harper and Row Publishers Inc., Hagerstown, pp 705–715

    Google Scholar 

  59. Burtis CA, Ashwood ER, Bruns DE (2012) Tietz textbook of clinical chemistry and molecular diagnostics, 5th edn. Saunders, Elsevier

    Google Scholar 

  60. Joanta AE, Filip A, Clichici S, Andrei S, Cluj-Napoca Romania CN (2006) Iodide excess exerts oxidative stress in some target tissues of the thyroid hormones. Acta Physiol Hung 293:347–359. https://doi.org/10.1556/APhysiol.93.2006.4.11

    Article  CAS  Google Scholar 

  61. Osuna PM, Udovcic M, Sharma MD (2017) Hyperthyroidism and the heart. MDCVJ XIII(2):60–63. https://doi.org/10.14797/mdcj-13-2-60

    Article  Google Scholar 

  62. Ilker S, Demet S, Anton P (2020) Iodine-induced hyperthyroidism: do you mind? SANAMED 15(2):215–217. https://doi.org/10.24125/sanamed.v15i2.458

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Dr. Al-Sayed Al-Attar, Professor of Pathology, Faculty of Veterinary Medicine, Zagazig University, Egypt, for his generous help in examining and reading of histopathological slides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hager Tarek H. Ismail.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, H.T.H. The Impact of Iodine Exposure in Excess on Hormonal Aspects and Hemato-Biochemical Profile in Rats. Biol Trace Elem Res 200, 706–719 (2022). https://doi.org/10.1007/s12011-021-02681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02681-7

Keywords

Navigation