Skip to main content
Log in

Green Synthesis of CuFe2O4@Ag Nanocomposite Using the Chlorella vulgaris and Evaluation of its Effect on the Expression of norA Efflux Pump Gene Among Staphylococcus aureus Strains

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Increasing drug resistance among Staphylococcus aureus is a global health threat and finding alternative antimicrobial agents against it has been considered. Multidrug resistance efflux pumps, including NorA, are involved with resistance to different drugs, especially fluoroquinolones, in S. aureus. Using metal nanoparticles against pathogenic bacteria is a promising approach; however, physio-chemical synthesis of nanoparticles has limitations. Biosynthesis of metal nanoparticles with antibacterial activity has gained interest, recently. In this study, biosynthesis of CuFe2O4@Ag nanocomposite using aqueous extract from microalgae Chlorella vulgaris was performed, and its antibacterial property and effect on expression of norA efflux pump gene were investigated. Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray mapping analysis (EDX-map), differential reflectance spectroscopy (DRS), and dynamic light scattering (DLS) were used to characterize synthesized nanocomposite. Antibacterial activity of the prepared nanocomposite individually and combined with ciprofloxacin against S. aureus strains was evaluated using the disk assay method, and minimum inhibitory concentration (MIC) of each agent was determined using the broth dilution method. Anti-biofilm activity of this nanocomposite was checked. Finally, the effect of CuFe2O4@Ag nanocomposite alone and in combination with ciprofloxacin on the expression of norA was assessed by real-time PCR. The physical analysis revealed proper synthesis of spherical and well-dispersed CuFe2O4@Ag nanocomposite with an average diameter of 20 nm. Synthesized nanocomposite had synergistic antibacterial activity with ciprofloxacin. Moreover, expression of norA gene among clinical and standard strains treated with CuFe2O4@Ag nanocomposite combined with ciprofloxacin reduced by 59% and 65%, respectively. Thus, CuFe2O4@Ag nanocomposite synthesized in this study can be considered as a promising candidate to be used to inhibit staphylococcal efflux pump genes and increasing the antibiotic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khoramian B, Jabalameli F, Niasari-Naslaji A, Taherikalani M, Emaneini M (2015) Comparison of virulence factors and biofilm formation among Staphylococcus aureus strains isolated from human and bovine infections. Microb Pathog 88:73–77. https://doi.org/10.1016/j.micpath.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Kumar A, Khan IA, Koul S, Koul JL, Taneja SC, Ali I, Ali F, Sharma S, Mirza ZM, Kumar M, Sangwan PL (2008) Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 61(6):1270–1276. https://doi.org/10.1093/jac/dkn088

    Article  CAS  PubMed  Google Scholar 

  3. Shokoofeh N, Moradi-Shoeili Z, Naeemi AS, Jalali A, Hedayati M, Salehzadeh A (2019) Biosynthesis of Fe 3 O 4@ Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant Staphylococcus aureus. Biol. Trace. Elem. Res.1-9. https://doi.org/10.1007/s12011-019-1632-y

  4. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/IJN.S121956

  5. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng: C, 44, 278–284. https://doi.org/10.1016/j.msec.2014.08.031

  6. Lin L, Cui H, Zeng G, Chen M, Zhang H, Xu M, Shen X, Bortolini C, Dong M (2013) Ag–CuFe 2 O 4 magnetic hollow fibers for recyclable antibacterial materials. J Mater Chem B 1(21):2719–2723. https://doi.org/10.1039/C3TB20223B

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Wu G, Zeng H (2005) Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydr Polym 60(1):33–38. https://doi.org/10.1016/j.carbpol.2004.11.020

    Article  CAS  Google Scholar 

  8. Akhavan O, Ghaderi E (2009) Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr Appl Phys 9(6):1381–1385. https://doi.org/10.1016/j.cap.2009.03.003

    Article  Google Scholar 

  9. Montazeri A, Salehzadeh A, Zamani H (2019) Effect of silver nanoparticles conjugated to thiosemicarbazide on biofilm formation and expression of intercellular adhesion molecule genes, icaAD, in Staphylococcus aureus. Folia Microbiol 1-8:153–160. https://doi.org/10.1007/s12223-019-00715-1

    Article  CAS  Google Scholar 

  10. Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88(11):1971–1977. https://doi.org/10.1002/jctb.4052

    Article  CAS  Google Scholar 

  11. Fardood ST, Ramazani A, Moradi S (2017) Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J Sol-Gel Sci Technol 82(2):432–439. https://doi.org/10.1007/s10971-017-4310-6

    Article  CAS  Google Scholar 

  12. Arsiya F, Sayadi MH, Sobhani S (2017) Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett 186:113–115. https://doi.org/10.1016/j.matlet.2016.09.101

    Article  CAS  Google Scholar 

  13. Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5(5):603–607. https://doi.org/10.1007/s13204-014-0353-y

    Article  CAS  Google Scholar 

  14. CLSI (2017) Performance standards for antimicrobial susceptibility testing; 27th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne

  15. Salehzadeh A, Zamani H, Langeroudi MK, Mirzaie A (2016) Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms. Iran J Basic Med Sci 19:1325–1330. https://doi.org/10.22038/ijbms

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dean AP, Martin MC, Sigee DC (2007) Resolution of codominant phytoplankton species in a eutrophic lake using synchrotron-based Fourier transform infrared spectroscopy. Phycologia. 46(2):151–159. https://doi.org/10.2216/06-27.1

    Article  Google Scholar 

  18. Truong-Bolduc QC, Hsing LC, Villet R, Bolduc GR, Estabrooks Z, Taguezem GF, Hooper DC (2012) Reduced aeration affects the expression of the NorB efflux pump of Staphylococcus aureus by posttranslational modification of MgrA. J Bacteriol 194(7):1823–1834. https://doi.org/10.1128/JB.06503-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silva MDP, Silva FC, Sinfrônio FSM, Paschoal AR, Silva EN, Paschoal CWA (2014) The effect of cobalt substitution in crystal structure and vibrational modes of CuFe2O4 powders obtained by polymeric precursor method. J Alloys Compd 584:573–580. https://doi.org/10.1016/j.jallcom.2013.08.074

    Article  CAS  Google Scholar 

  20. Buzoglu L, Maltas E, Ozmen M, Yildiz S (2014) Interaction of donepezil with human serum albumin on amine-modified magnetic nanoparticles. Colloids Surf A: Physicochemical and Engineering Aspects 442:139–145. https://doi.org/10.1016/j.colsurfa.2013.03.009

    Article  CAS  Google Scholar 

  21. Yang H, Liu Y, Shen Q, Chen L, You W, Wang X, Sheng J (2012) Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. J Mater Chem 22:24132–24138. https://doi.org/10.1039/C2JM35621J

    Article  CAS  Google Scholar 

  22. Yang M, He J, Hu X, Yan C, Cheng Z (2013) Synthesis of nanostructured copper oxide via oxalate precursors and their sensing properties for hydrogen cyanide gas. Analyst 138:1758–1763. https://doi.org/10.1039/c2an36380a

    Article  CAS  PubMed  Google Scholar 

  23. Sallem F, Haji R, Vervandier-Fasseur D (2019) Elaboration of trans-resveratrol derivative-loaded superparamagnetic iron oxide nanoparticles for glioma treatment. Nanomaterials. 9:287–307. https://doi.org/10.3390/nano9020287

    Article  CAS  PubMed Central  Google Scholar 

  24. Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S (2015) Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces 7(12):6966–6973. https://doi.org/10.1021/acsami.5b00937

    Article  CAS  PubMed  Google Scholar 

  25. Yang H, Yan JLZ, Cheng X, Tang Y (2009) Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J Alloy Compnd 476(1–2):715–719. https://doi.org/10.1016/j.jallcom.2008.09.104

    Article  CAS  Google Scholar 

  26. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M (2012) Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomedicine 7:5603

    Article  CAS  Google Scholar 

  27. Zhu Z, Li X, Zhao Q, Li Y, Sun C, Cao Y (2013) Photocatalytic performances and activities of Ag-doped CuFe2O4 nanoparticles. Mater Res Bull 48(8):2927–2932. https://doi.org/10.1016/j.materresbull.2013.04.042

    Article  CAS  Google Scholar 

  28. Sangwan PL, Koul JL, Koul S, Reddy MV, Thota N, Khan IA, Kumar A, Kalia NP, Qazi GN (2008) Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg Med Chem 16(22):9847–9857. https://doi.org/10.1016/j.bmc.2008.09.042

    Article  CAS  PubMed  Google Scholar 

  29. Hooper DC (2001) Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7(2):337–341

    Article  CAS  Google Scholar 

  30. Kaatz GW, Seo SM, Ruble CA (1991) Mechanisms of fluoroquinolone resistance in Staphylococcus aureus. J Infect Dis 163(5):1080–1086

    Article  CAS  Google Scholar 

  31. Markham PN, Westhaus E, Klyachko K, Johnson ME, Neyfakh AA (1999) Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob Agents Chemother 43(10):2404–2408

    Article  CAS  Google Scholar 

  32. Sabatini S, Kaatz GW, Rossolini GM, Brandini D, Fravolini A (2008) From phenothiazine to 3-phenyl-1, 4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. J Med Chem 51(14):4321–4330

    Article  CAS  Google Scholar 

  33. Gingasu D, Mindru I, Patron L, Calderon-Moreno JM, Mocioiu OC, Preda S, Gradisteanu G (2016) Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. J Nanomater 2016. https://doi.org/10.1155/2016/2106756

  34. Samavati A, Ismail AF (2017) Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology. 30:158–163. https://doi.org/10.1016/j.partic.2016.06.003

    Article  CAS  Google Scholar 

  35. Ashour AH, El-Batal AI, Maksoud MA, El-Sayyad GS, Labib S, Abdeltwab E, El-Okr MM (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology. 40:141–151. https://doi.org/10.1016/j.partic.2017.12.001

    Article  CAS  Google Scholar 

  36. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto O, Sawai J (2001) Preparation and characterization of novel activated carbons with antibacterial function. Bull Chem Soc Jpn 74(9):1761–1765. https://doi.org/10.1246/bcsj.74.1761

    Article  CAS  Google Scholar 

  38. Geoghegan JA, Corrigan RM, Gruszka D, Speziale P, O’Gara JP, Potts JR, Foster TJ (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192:5663–5673. https://doi.org/10.1128/JB.00628-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Guilan and Islamic Azad University (Rasht branch) for providing facilities to carry out this work. Also, the authors would like to thanks Mr. Hamid Donyaei, the manager of Parsian Microalgae Company for providing the Chlorella vulgaris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahzad, N., Salehzadeh, A. Green Synthesis of CuFe2O4@Ag Nanocomposite Using the Chlorella vulgaris and Evaluation of its Effect on the Expression of norA Efflux Pump Gene Among Staphylococcus aureus Strains. Biol Trace Elem Res 198, 359–370 (2020). https://doi.org/10.1007/s12011-020-02055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02055-5

Keywords

Navigation