Skip to main content
Log in

Sodium Selenite Improves In Vitro Maturation of Bos primigenius taurus Oocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential trace element with important functions in animals and whose deficiency is associated with reproductive failures. The aim of this study was to investigate the effect of Se concentrations during in vitro maturation (IVM) of Bos taurus oocyte within the reference ranges for Se status in cattle. For this purpose, Aberdeen Angus cumulus–oocyte complexes (COCs) were matured in IVM medium supplemented with 0, 10, 50, and 100 ng/mL Se (control, deficient, marginal, and adequate, respectively). The results demonstrated that marginal and adequate Se concentrations added during IVM increased viability and non-apoptotic cumulus cells (CC). Moreover, the addition of Se to culture media decreased malondialdehyde level in COC with all studied concentrations and increased total glutathione content in CC and oocytes with 10 ng/mL Se. On the other hand, total antioxidant capacity of COC, nuclear maturation, and the developmental capacity of oocytes were not modified by Se supplementation. However, 10 ng/mL Se increased hatching rate. In conclusion, supplementation with 10 ng/mL Se during in vitro maturation of Bos primigenius taurus oocytes should be considered to improve embryo quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boland MP (2003) Trace minerals in production and reproduction in dairy cows Adv dairy technol 15:319

    Google Scholar 

  2. Mehdi Y, Dufrasne I (2016) Selenium in cattle: a review. Molecules 21:545. https://doi.org/10.3390/molecules21040545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh AK, Rajak SK, Kumar P, Shilpi Kerketta Yogi RK (2018) Nutrition and bull fertility: a review. J Entomol Zool Stud 6(6):635–643

    Google Scholar 

  4. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of selenium in male reproduction - a review. Anim Reprod Sci 146:55–62

    Article  CAS  Google Scholar 

  5. Wu ASH, Oldfield JE, Shull LR, Cheeke PR (1979) Specific effect of selenium deficiency on rat sperm. Biol Reprod 20:793–798. https://doi.org/10.1095/biolreprod20.4.793

    Article  CAS  PubMed  Google Scholar 

  6. Behne D, Weiler H, Kyriakopoulos A (1996) Effects of selenium deficiency on testicular morphology and function in rats. Reproduction 106:291–297. https://doi.org/10.1530/jrf.0.1060291

    Article  CAS  Google Scholar 

  7. Kaur R, Kaur K (2000) Effects of dietary selenium (SE) on morphology of testis and cauda epididymis in rats. Indian J Physiol Pharmacol 44:265–272

    CAS  PubMed  Google Scholar 

  8. Marai IFM, El-Darawany A-HA, Ismail E-SA-F, Abdel-Hafez MAM (2009) Reproductive and physiological traits of Egyptian Suffolk rams as affected by selenium dietary supplementation and housing heat radiation effects during winter of the sub-tropical environment of Egypt (Short Communication). Arch Anim Breed 52:402–409. https://doi.org/10.5194/aab-52-402-2009

    Article  CAS  Google Scholar 

  9. Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176:70–76. https://doi.org/10.1016/j.tvjl.2007.12.015

    Article  CAS  PubMed  Google Scholar 

  10. Hefnawy AEG, Tórtora-Pérez JL (2010) The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Res 89:185–192. https://doi.org/10.1016/j.smallrumres.2009.12.042

    Article  Google Scholar 

  11. Sordillo LM (2013) Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet Med Int 2013:154045. https://doi.org/10.1155/2013/154045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kommisrud E, Osterås O, Vatn T (2005) Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet Scand 46:229–240

    Article  CAS  Google Scholar 

  13. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656. https://doi.org/10.1093/jn/130.7.1653

    Article  CAS  PubMed  Google Scholar 

  14. Pehrson B, Hakkarainen J, Työppönen J (1986) Nutritional muscular degeneration in young heifers. Nord Vet Med 38:26–30

    CAS  PubMed  Google Scholar 

  15. Smith KL, Hogan JS, Conrad HR (1988) Selenium in dairy cattle: Its role in disease resistance. Vet Med 83:72–78

    Google Scholar 

  16. Gerloff BJ (1992) Effect of selenium supplementation on dairy cattle. J Anim Sci 70:3934–3940

    Article  CAS  Google Scholar 

  17. Ceballos MA, Wittwer F (1996) Metabolismo del selenio en rumiantes. Arch Med Vet XXVIII:15

    Google Scholar 

  18. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  19. Rivera RE, Christensen VL, Edens FW, Wineland MJ (2005) Influence of selenium on heat shock protein 70 expression in heat stressed turkey embryos (Meleagris gallopavo). Comp Biochem Physiol Part A Mol Integr Physiol 142:427–432. https://doi.org/10.1016/j.cbpa.2005.09.006

    Article  CAS  Google Scholar 

  20. Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14:1263–1278. https://doi.org/10.3390/molecules14031263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gopalakrishna R, Chen ZH, Gundimeda U (1997) Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Arch Biochem Biophys 348:37–48. https://doi.org/10.1006/abbi.1997.0335

    Article  CAS  PubMed  Google Scholar 

  22. Fontenelle LC, Feitosa MM, Morais JBS et al (2018) The role of selenium in insulin resistance. Braz J Pharm Sci 54:1–11. https://doi.org/10.1590/s2175-97902018000100139

    Article  CAS  Google Scholar 

  23. Raghu HM, Reddy SM, Nandi S (2002) Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, semidefined media. Vet Rec 151:260–265. https://doi.org/10.1136/vr.151.9.260

    Article  CAS  PubMed  Google Scholar 

  24. Jeong YW, Hossein MS, Bhandari DP, Kim YW, Kim JH, Park SW, Lee E, Park SM, Jeong YI, Lee JY, Kim S, Hwang WS (2008) Effects of insulin-transferrin-selenium in defined and porcine follicular fluid supplemented IVM media on porcine IVF and SCNT embryo production. Anim Reprod Sci 106:13–24. https://doi.org/10.1016/j.anireprosci.2007.03.021

    Article  CAS  PubMed  Google Scholar 

  25. Córdova B, Morató R, Izquierdo D, Paramio T, Mogas T (2010) Effect of the addition of insulin-transferrin-selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development. Theriogenology 74:1341–1348. https://doi.org/10.1016/j.theriogenology.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  26. Makki M, Saboori E, Sabbaghi MA et al (2012) Effects of selenium, calcium and calcium ionophore on human oocytes in vitro maturation in a chemically defined medium. Iran J Reprod Med 10:343–348

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker RD, Baker SS, Rao R (1998) Selenium deficiency in tissue culture: implications for oxidative metabolism. J Pediatr Gastroenterol Nutr 27:387–392

    Article  CAS  Google Scholar 

  28. Xiong X, Lan D, Li J, Lin Y, Li M (2018) Selenium supplementation during in vitro maturation enhances meiosis and developmental capacity of yak oocytes. Anim Sci J 89:298–306. https://doi.org/10.1111/asj.12894

    Article  CAS  PubMed  Google Scholar 

  29. Anchordoquy JP, Anchordoquy JM, Sirini MA, Mattioli G, Picco SJ, Furnus CC (2013) Effect of different manganese concentrations during in vitro maturation of bovine oocytes on DNA integrity of cumulus cells and subsequent embryo development. Reprod Domest Anim 48:905–911. https://doi.org/10.1111/rda.12184

    Article  CAS  PubMed  Google Scholar 

  30. Picco SJ, Anchordoquy JM, de Matos DG et al (2010) Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 74:1141–1148. https://doi.org/10.1016/j.theriogenology.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  31. Picco SJ, Rosa DE, Anchordoquy JP, Anchordoquy JM, Seoane A, Mattioli GA, Furnus CC (2012) Effects of copper sulphate concentrations during in vitro maturation of bovine oocytes. Theriogenology 77:373–381. https://doi.org/10.1016/j.theriogenology.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  32. Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL (1986) Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 25:591–600

    Article  CAS  Google Scholar 

  33. Tervit HR, Whittingham DG, Rowson LE (1972) Successful culture in vitro of sheep and cattle ova. J Reprod Fertil 30:493–49734

    Article  CAS  Google Scholar 

  34. Gardner DK, Lane M, Spitzer A, Batt PA (1994) Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod 50:390–400

    Article  CAS  Google Scholar 

  35. Anchordoquy JP, Anchordoquy JM, Pascua AM et al (2017) The copper transporter (SLC31A1/CTR1) is expressed in bovine spermatozoa and oocytes: Copper in IVF medium improves sperm quality. Theriogenology 97:124–133. https://doi.org/10.1016/j.theriogenology.2017.04.037

    Article  CAS  PubMed  Google Scholar 

  36. Izadyar F, Colenbrander B, Bevers MM (1997) Stimulatory effect of growth hormone on in vitro maturation of bovine oocytes is exerted through the cyclic adenosine 3’,5’-monophosphate signaling pathway. Biol Reprod 57:1484–1489

    Article  CAS  Google Scholar 

  37. Süss U, Wüthrich K, Stranzinger G (1988) Chromosome configurations and time sequence of the first meiotic division in bovine oocytes matured in vitro. Biol Reprod 38:871–880

    Article  Google Scholar 

  38. Glander HJ, Schaller J (1999) Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod 5:109–115

    Article  CAS  Google Scholar 

  39. Paasch U, Sharma RK, Gupta AK et al (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 71:1828–1837. https://doi.org/10.1095/biolreprod.103.025627

    Article  CAS  PubMed  Google Scholar 

  40. Furnus CC, de Matos DG, Moses DF (1998) Cumulus expansion during in vitro maturation of bovine oocytes: relationship with intracellular glutathione level and its role on subsequent embryo development. Mol Reprod Dev 51:76–83. https://doi.org/10.1002/(SICI)1098-2795(199809)51:1<76::AID-MRD9>3.0.CO;2-T

  41. Mauro MO, Sartori D, Oliveira RJ, Ishii PL, Mantovani MS, Ribeiro LR (2011) Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells. Mutat Res 715:7–12. https://doi.org/10.1016/j.mrfmmm.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  42. Zou Y, Shao J, Li Y, et al (2019) Protective effects of inorganic and organic selenium on heat stress in bovine mammary epithelial cells. In: Oxidative medicine and cellular longevity. https://www.hindawi.com/journals/omcl/2019/1503478/. Accessed 28 Mar 2019

  43. Uhm SJ, Gupta MK, Yang JH, Lee SH, Lee HT (2007) Selenium improves the developmental ability and reduces the apoptosis in porcine parthenotes. Mol Reprod Dev 74:1386–1394. https://doi.org/10.1002/mrd.20701

    Article  CAS  PubMed  Google Scholar 

  44. Sunde RA (1990) Molecular biology of selenoproteins. Annu Rev Nutr 10:451–474. https://doi.org/10.1146/annurev.nu.10.070190.002315

    Article  CAS  PubMed  Google Scholar 

  45. Mihailović M, Cvetković M, Ljubić A, Kosanović M, Nedeljković S, Jovanović I, Pesut O (2000) Selenium and malondialdehyde content and glutathione peroxidase activity in maternal and umbilical cord blood and amniotic fluid. Biol Trace Elem Res 73:47–54. https://doi.org/10.1385/BTER:73:1:47

    Article  PubMed  Google Scholar 

  46. Ansar S, Alshehri SM, Abudawood M, Hamed SS, Ahamad T (2017) Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int J Nanomedicine 12:7789–7797. https://doi.org/10.2147/IJN.S136748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ceko MJ, Hummitzsch K, Hatzirodos N, Bonner WM, Aitken JB, Russell DL, Lane M, Rodgers RJ, Harris HH (2015) X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 7:71–82. https://doi.org/10.1039/c4mt00228h

    Article  CAS  PubMed  Google Scholar 

  48. Abedelahi A, Salehnia M, Allameh AA, Davoodi D (2010) Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum Reprod 25:977–985. https://doi.org/10.1093/humrep/deq002

    Article  CAS  PubMed  Google Scholar 

  49. Basini G, Tamanini C (2000) Selenium stimulates estradiol production in bovine granulosa cells: possible involvement of nitric oxide. Domest Anim Endocrinol 18:1–17. https://doi.org/10.1016/S0739-7240(99)00059-4

    Article  CAS  PubMed  Google Scholar 

  50. Paszkowski T, Traub AI, Robinson SY, McMaster D (1995) Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta 236:173–180

    Article  CAS  Google Scholar 

  51. Shamsuddin M, Larsson B, Gustafsson H, Rodriguez-Martinez H (1994) A serum-free, cell-free culture system for development of bovine one-cell embryos up to blastocyst stage with improved viability. Theriogenology 41:1033–1043

    Article  CAS  Google Scholar 

  52. de Matos DG, Furnus CC, Moses DF, Baldassarre H (1995) Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol Reprod Dev 42:432–436. https://doi.org/10.1002/mrd.1080420409

    Article  PubMed  Google Scholar 

  53. Funahashi H, Day BN (1995) Effect of cumulus cells on glutathione content of porcine oocytes during in vitro maturation. J Anim Sci 73(1):90

    Google Scholar 

  54. Miyamura M, Yoshida M, Hamano S, Kuwayama M (1995) Glutathione concentration during maturation and fertilization in bovine oocytes. Theriogenology 43(1):282

    Article  Google Scholar 

  55. de Matos DG, Furnus CC, Moses DF, Martinez AG, Matkovic M (1996) Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability. Mol Reprod Dev 45:451–457. https://doi.org/10.1002/(SICI)1098-2795(199612)45:4<451::AID-MRD7>3.0.CO;2-Q

    Article  PubMed  Google Scholar 

  56. Batist G, Katki AG, Klecker RW, Myers CE (1986) Selenium-induced cytotoxicity of human leukemia cells: interaction with reduced glutathione. Cancer Res 46:5482–5485

    CAS  PubMed  Google Scholar 

  57. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  CAS  Google Scholar 

  58. Lee KH, Jeong D (2012) Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (Review). Mol Med Rep 5:299–304. https://doi.org/10.3892/mmr.2011.651

    Article  CAS  PubMed  Google Scholar 

  59. Shalini S, Bansal MP (2007) Co-operative effect of glutathione depletion and selenium induced oxidative stress on API and NFkB expression in testicular cells in vitro: insights to regulation of spermatogenesis. Biol Res 40:307–317 https://doi.org//S0716-97602007000400005

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful to Centro de Inseminación Artificial La Elisa S.A. (CIALE) for providing bovine frozen semen, and the Staff of SENASA from Frigorífico Gorina S.A. for providing the bovine ovaries. This work was supported by Grant PICT 2015-2154 from Agencia Nacional de Promoción Científica y Tecnológica de la República Argentina (MINCyT). Thanks are also due to A. Di Maggio for manuscript correction and edition.

Author information

Authors and Affiliations

Authors

Contributions

R.M.L. and J.M.A. designed the study, E.M.G., N.A.F., and A.C-M. assisted with data collection. C.C.F. and G.A.M analyzed the data and J.P.A. coordinated the experiments and revised the manuscript. All co-authors participated in lab work.

Corresponding author

Correspondence to Juan Patricio Anchordoquy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizarraga, R.M., Anchordoquy, J.M., Galarza, E.M. et al. Sodium Selenite Improves In Vitro Maturation of Bos primigenius taurus Oocytes. Biol Trace Elem Res 197, 149–158 (2020). https://doi.org/10.1007/s12011-019-01966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01966-2

Keywords

Navigation