Skip to main content
Log in

The Effect of Urbanization on Trace Element Concentration and Symmetry of Woodlice (Armadillidium vulgare Latreille, 1804)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Woodlice are top consumers of a three-trophic system (soil, leaf litter, woodlice), and they are closely related to pollutant absorbing surfaces such as soil, leaf litter, and organic matter. We studied the effects of urbanization on trace element concentrations and fluctuating asymmetry of Armadillidium vulgare (Crustacea: Isopoda) individuals in and around Debrecen city, Hungary. Along an urbanization gradient (urban, suburban, and rural areas), trace element concentrations (Ba, Cu, Fe, Mn, Pb, and Zn) of woodlice and bioconcentration factor (BCF) were analyzed. Asymmetry was also measured in metric traits of woodlice: the length of three segments of antennae, the body length, and the width of the 3rd segment of pereon. We found significant differences in Ba and Cu concentration of A. vulgare individuals along the urbanization gradient. The highest Cu concentration was found in woodlice from the urban area and the highest Ba concentration was found in the individuals from the rural area. The Ba concentration was higher in females than in males. The BCF values of Cu indicated that A. vulgare accumulated this element from soil and leaf litter. There was no significant difference in symmetry of the bilateral traits of woodlice along the urbanization gradient based on FA levels. Our results showed that the urbanization had remarkable effect on the Ba and Cu concentration of woodlice which were originated from traffic pollution. At the same time, the anthropogenic activities did not affect the symmetry of the tested traits of A. vulgare individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Purchart L, Kula E, Suchomel J (2010) The reaction of ground beetle (Coleoptera: Carabidae) assemblages to a contaminated mining site in Central Europe. Com Ecol 11:242–249

    Article  Google Scholar 

  2. Gal J, Markiewicz-Patkowska J, Hursthouse A, Tatner P (2008) Metal uptake by woodlice in urban soils. Ecotoxicol Environ Saf 69:139–149

    Article  CAS  PubMed  Google Scholar 

  3. Cachada A, Dias AC, Pato P, Mieiro C, Rocha-Santos T, Pereira ME, Ferreira da Silva E, Duarte AC (2013) Major inputs and mobility of potentially toxic elements contamination in urban areas. Environ Monit Assess 185:279–294

    Article  CAS  PubMed  Google Scholar 

  4. Pacyna JM (1984) Estimation of the atmospheric emissions of trace elements from anthropogenic sources in Europe. Atmos Environ 18:41–50

    Article  CAS  Google Scholar 

  5. Monaci F, Bargagli R (1997) Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut 100:89–98

    Article  CAS  Google Scholar 

  6. Simon E, Harangi S, Baranyai E, Braun M, Fábián I, Sz M, Nagy L, Tóthmérész B (2015) Distribution of toxic elements between biotic and abiotic components of terrestrial ecosystem along an urbanization gradient: soil, leaf litter and ground beetles. Ecol Indic 60:258–264

    Article  CAS  Google Scholar 

  7. Cortet J, Gomot-De Vauflery A, Poinsot-Balaguer N, Gomot L, Texier C, Daniel C (1999) The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol 35:115–134

    Article  CAS  Google Scholar 

  8. Lens L, Van Dongen S, Salit K, Matthysen E (2002) Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between the studies? Biol Rev 7:27–38

    Article  Google Scholar 

  9. Vilisics F, Sólymos P, Hornung E (2005) Measuring fluctuating asymmetry of the terrestrial isopod Trachelipus rathkii (Crustacea: Isopoda, Oniscidea). Eur J Soil Biol 41:85–90 woodlice in urban soils. Ecotox Environ Safe 69:136–149

    Article  Google Scholar 

  10. Zöld B, Wittmann KJ (2003) Effects of sampling, preparation and defection on metal concentrations in selected invertebrates at urban sites. Chemosphere 52:1095–1110

    Article  CAS  Google Scholar 

  11. Magura T, Lövei GL, Tóthmérész B (2010) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob Ecol Biogeogr 19:16–26

    Article  Google Scholar 

  12. Hopkin SP, Hardisty GN, Martin MH (1986) The woodlouse Porcellio scaber as a ‘biological indicator’ of zinc, cadmium, lead and copper pollution. Environ Pollut 11:271–290

    Article  CAS  Google Scholar 

  13. Hopkin SP, Jones DT, Dietrich D (1993) The isopod Porcellio scaber as a monitor of the bioavailability of metals in terrestrial ecosystems: towards a global ‘woodlouse watch’ scheme. Sci Total Environ 134:357–365

  14. Dallinger R, Berger B, Birkel S (1992) Terrestrial isopods: useful biological indicators of urban metal pollution. Oecologia 89:32–41

    Article  PubMed  Google Scholar 

  15. Heikens A, Peijnenburg WJGM, Hendricks AJ (2001) Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut 113:385–393

    Article  CAS  PubMed  Google Scholar 

  16. Zidar P, Drobne D, Strus J, Blejec A (2003) Intake and assimilation of zinc, copper, and cadmium in the terrestrial Isopod Porcellio scaber Latr. (Crustacea, Isopoda). Bull Environ Contam Toxicol 70:1028–1035

    Article  CAS  PubMed  Google Scholar 

  17. Dallinger R (1993) Strategies of metal detoxification in terrestrial invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca Raton, pp 245–289

    Google Scholar 

  18. Witzel B (2000) The influence of zinc on the uptake and loss of cadmium and lead in the woodlouse, Porcellio scaber (Isopoda, Oniscidea). Ecotoxicol Environ Saf 47:43–53

    Article  CAS  PubMed  Google Scholar 

  19. Nannoni F, Mazzero R, Protano G, Santolini R (2015) Bioaccumulation of heavy elements by Armadillidium vulgare (Crustacea, Isopoda) exposed to fallout of a municipal solid waste landfill. Ecol Indic 49:24–31

    Article  CAS  Google Scholar 

  20. Prosi F, Dallinger R (1988) Heavy metals in the terrestrial isopod Porcellio scaber Latreille. I. Histochemical and ultrastructural characterization of metal containing lysosomes. Cell Biol Toxicol 4:81–96

    Article  CAS  PubMed  Google Scholar 

  21. Dallinger R, Prosi F (1988) Heavy metals in the terrestrial isopod Porcellio scaber Latreille. II. Subcellular fractionation of metal-accumulating lysosomes from hepatopancreas. Cell Biol Toxicol 4:97–109

    Article  CAS  PubMed  Google Scholar 

  22. Donker MH, Koevoets P, Verkleij JAC, Van Straalen NM (1990) Metal binding compounds in hepatopancreas and haemolymph of Porcellio scaber (isopoda) from contaminated and reference areas. Comp Biochem Physiol Part C: Comp Pharmacol 97:119–126

    Article  Google Scholar 

  23. Jones DT, Hopkin SP (1998) Reduced survival and body size in terrestrial isopod Porcellio scaber from a metal-polluted environment. Environ Pollut 90:215–233

    Article  Google Scholar 

  24. Hopkin S (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, Barking 366 pp

    Google Scholar 

  25. Palmer AR, Strobeck C (1992) Fluctuating asymmetry as a measure of developmental stability: implications of non-normal distributions and power of statistical tests. Acta Zool Fenn 191:57–72

    Google Scholar 

  26. Peters EL, Jagoe CH, Bell TJ (2001) Effects of accumulation of hazardous metals on terrestrial isopod (Armadillidium vulgare) in urban environments. Abstracts of the 86. Annual meeting of the Ecological Society of America (pp 329). Madison, WI

  27. Godet JP, Demuynck S, Waterlot C, Lemière S, Souty-Grosset C, Scheifler R, Douay F, Leprêtre A, Pruvot C (2011) Growth and metal accumulation in Porcellio scaber exposed to poplar litter from Cd-, Pb-, and Zn-contaminated sites. Ecotoxicol Environ Saf 74:451–458

    Article  CAS  PubMed  Google Scholar 

  28. Farkas S, Vilisics F (2013) Magyarország szárazföldi ászkarák faunájának határozója (Isopoda: Oniscidea). Nat Somogy 23:89–124

    Google Scholar 

  29. Magura T, Tóthmérész B, Elek Z (2004) Effects of leaf-litter addition on carabid beetles in a nonnative Norway spruce planation. Acta Zool Acad Sci Hung 50:9–23

    Google Scholar 

  30. Braun M, Simon E, Fábián I, Tóthmérész B (2009) The effects of ethylene glycol and ethanol on the body mass and elemental composition of insects collected with pitfall traps. Chemosphere 77:1447–1452

    Article  CAS  PubMed  Google Scholar 

  31. Braun M, Simon E, Fábián I, Tóthmérész B (2012) Elemental analysis of pitfall-trapped insect samples: effect of ethylene glycol grades. Entomol Exp Appl 143:89–94

    Article  Google Scholar 

  32. Simon E, Braun M, Vidic A, Bogyó D, Fábián I, Tóthmérész B (2011) Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environ Pollut 159:1229–1233

    Article  CAS  PubMed  Google Scholar 

  33. Simon E, Baranyai E, Braun M, Fábián I, Tóthmérész B (2013) Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis. Biol Trace Elem Res 154:81–87

    Article  CAS  PubMed  Google Scholar 

  34. Simon E, Kis O, Jakab T, Kolozsvári I, Málnás K, Harangi S, Baranyai E, Miskolczi M, Tóthmérész B, Gy D (2017) Assessment of contamination based on trace element concentration of dragonfly larvae in the Upper Tisza Region. Ecotoxicol Environ Saf 13:55–61

    Article  CAS  Google Scholar 

  35. Garg R, Smith CJ (2014) Predicting the bioconcentration factor of highly hydrophobic organic chemicals. Food Chem Toxicol 69:252–259

    Article  CAS  PubMed  Google Scholar 

  36. Ivanciuc T, Ivanciuc O, Klein DJ (2006) Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR). Mol Divers 10:133–145

    Article  CAS  PubMed  Google Scholar 

  37. Van Valen L (1962) A study of fluctuating asymmetry. Evolution 16(2):125–142 Published by: Society for the Study of Evolution

    Article  Google Scholar 

  38. Palmer AR (1996) Fluctuating asymmetry analyses: a primer. In: Markow TA (ed) Developmental instability: its origins and evolutionary implications. Kluwer, Netherlands, pp 335–364

    Google Scholar 

  39. Van Straalen NM, Butovsky RO, Pokarzhevskii AD, Zaitsev AS, Verhoef SC (2001) Metal concentrations in soils and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 4:451–466

    Article  Google Scholar 

  40. Drobne D, Hopkin SP (1995) The toxicity of zinc to terrestrial isopods in a “standard” laboratory test. Ecotoxicol Environ Saf 31:1–6

    Article  CAS  PubMed  Google Scholar 

  41. Godet JP, Demuynck S, Waterlot C, Lemière S, Souty-Grosset C, Douay F, Leprêtre A, Pruvot C (2012) Fluctuating asymmetry analysis on Porcellio scaber (Crustacea, Isopoda) populations living under metals-contaminated woody habitats. Ecol Indic 23:130–139

    Article  CAS  Google Scholar 

  42. Odendaal JP, Reinecke AJ (1998) The sublethal effects and accumulation of cadmium in the terrestrial Isopod Porcellio laevis Latr. (Crustacea, Isopoda). Department of Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

  43. Simon E, Baranyai E, Braun M, Cserháti C, Fábián I, Tóthmérész B (2014) Elemental concentrations in deposited dust on leaves along an urbanization gradient. Sci Total Environ 490:514–520

    Article  CAS  PubMed  Google Scholar 

  44. Kertész Z, Szoboszlai Z, Dobos E, Borbély-Kiss I (2008) Characterization of urban aerosol sources in Debrecen, Hungary. AGD Lands Environ 1:57–67

    Google Scholar 

  45. Lowenthal DH, Zielinska B, Chow JC, Watson JG, Gautam M, Ferguson DH, Neuroth GR, Stevens KD (1994) Characterization of heavy-duty diesel vehicle emissions. Atmos Environ 28:731–743

    Article  CAS  Google Scholar 

  46. Hulskotte JH, van der Gon HA, Visschedijk AJ, Schaap M (2007) Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci Technol 56:223–231

    Article  CAS  PubMed  Google Scholar 

  47. Kozlov MV, Haukioja E, Bakhtiarov AV, Stroganov DN, Zimina SN (2000) Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environ Pollut 107:413–420

    Article  CAS  PubMed  Google Scholar 

  48. Sardans J, Peñuelas J (2005) Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia. Chemosphere 60:1293–1307

    Article  CAS  PubMed  Google Scholar 

  49. Hassal LM, Turner JG, Rands MRW (1978) Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 72:597–604

    Article  Google Scholar 

  50. Vijver MG, Vink JPM, Jager T, Van Straalen NM, Wolterbeek HT, Van Gestel CAM (2006) Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food. Soil Biol Biochem 38:1554–1563

    Article  CAS  Google Scholar 

  51. Jelaska LS, Blanusa M, Durbesic P, Jelaska D (2007) Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem. Ecotoxicol Environ Saf 66:74–81

    Article  CAS  PubMed  Google Scholar 

  52. Butovsky RO (2011) Heavy metals in carabids (Coleoptera: Carabidae). In: Kotze DJ, Assmann T, Noordíjk J, Turin H, Vermeulen R (eds) Carabid beetles as bioindicators: biogeographical, ecological and environmental studies. ZooKeys 100:215–222

  53. Witzel B (1992) Die Eignung von Porcellio scaber ¸atr. (Isopoda) zumaktiven Monitoring von Blei- und Cadmiumim missionen in anthropogenbelasteten OG kosystemen. Ph.D. thesis, Free University Berlin

  54. Jemec A, Lester V, Drobne D (2012) The link between antioxidant enzymes catalase and glutathione S-transferase and psychological condition of a control population of terrestrial isopod (Porcelio scaber). Ecotoxicol Environ Saf 79:42–47

    Article  CAS  PubMed  Google Scholar 

  55. Polak M, Opoka R, Cartwright IL (2002) Response of fluctuating asymmetry to arsenic toxicity: support for the developmental selection hypothesis. Environ Pollut 118:19–28

    Article  CAS  PubMed  Google Scholar 

  56. Rasmuson M (2002) Fluctuating asymmetry indicator of what? Hereditas 136:177–183

    Article  PubMed  Google Scholar 

  57. Møller AP (1997) Developmental stability and fitness: a review. Am Nat 149:916–932

    Article  PubMed  Google Scholar 

Download references

Funding

The study was supported by the SROP-4.2.2.B-15/1/KONV20150001 project. Research was supported by OTKA K 116639, KH 126481 and KH 126477 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Simon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papp, D., Simon, E., Nagy, L. et al. The Effect of Urbanization on Trace Element Concentration and Symmetry of Woodlice (Armadillidium vulgare Latreille, 1804). Biol Trace Elem Res 189, 251–258 (2019). https://doi.org/10.1007/s12011-018-1454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1454-3

Keywords

Navigation