Skip to main content

Advertisement

Log in

Zinc Chelator Inhibits Zinc-Induced Islet Amyloid Polypeptide Deposition and Apoptosis in INS-1 Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Amyloid deposition and beta cell apoptosis are characteristic pathological features of type 2 diabetes mellitus (DM). Islet amyloid polypeptide (IAPP) is the most abundant component of amyloid deposition. Monomeric IAPP does not form amyloid deposition, but the fibrous IAPP may aggregate and form amyloid deposits. Previous studies have shown that zinc is closely related to IAPP deposition through crosslink with monomeric IAPP into fibrous aggregates. In this study, we aimed to investigate whether chelating zinc could inhibit zinc-induced amyloid deposits and apoptosis of islet beta cell. N, N, N′, N′-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) is a specific chelator of zinc, with membrane permeability. It could effectively reduce the concentration of intracellular zinc. So, we used TPEN to treat hIAPP-transfected INS-1 cells. By MTT assay, the concentration (1 μM) and incubation time (12 h) of TPEN without affecting cell viability were determined. The results showed that TPEN reduced zinc-induced IAPP deposition in the culture system. Furthermore, we analyzed the effect of zinc and TPEN on the apoptosis and insulin level. The results showed that TPEN could reverse zinc-induced INS-1 cell apoptosis and insulin secretion. And the anti-apoptosis effects of TPEN is related to extracellular regulated protein kinases (ERK)/c-jun N-terminal kinase (JNK) signaling pathway. The present data indicated that chelating zinc could inhibit zinc-induced amyloid deposition and beta cell apoptosis. Thus, maintaining zinc homeostasis in islet beta cell might become a useful strategy for DM therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sasahara K (2018) Membrane-mediated amyloid deposition of human islet amyloid polypeptide. Biophys Rev 10:453–462

    Article  CAS  PubMed  Google Scholar 

  2. Mao Y, Yu L, Mao M, Ma C, Qu L (2018) Design and study of lipopeptide inhibitors on preventing aggregation of human islet amyloid polypeptide residues 11-20. J Pept Sci 24

  3. Zhang XX, Pan YH, Huang YM, Zhao HL (2016) Neuroendocrine hormone amylin in diabetes. World J Diabetes 7:189–197

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sanke T, Hanabusa T, Nakano Y, Oki C, Okai K, Nishimura S, Kondo M, Nanjo K (1991) Plasma islet amyloid polypeptide (amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34:129–132

    Article  CAS  PubMed  Google Scholar 

  5. Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP (2013) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 587:1106–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmad E, Ahmad A, Singh S, Arshad M, Khan AH, Khan RH (2011) A mechanistic approach for slet amyloid polypeptide aggregation to develop anti-amyloidogenic agents for type-2 diabetes. Biochimie 93:793–805

    Article  CAS  PubMed  Google Scholar 

  7. Gurlo T, Rivera JF, Butler AE, Cory M, Hoang J, Costes S, Butler PC (2016) CHOP contributes to, but is not the only mediator of, IAPP induced beta-cell apoptosis. Mol Endocrinol 30:446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brender JR, Hartman K, Reid KR, Kennedy RT, Ramamoorthy A (2008) A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity. Biochemistry 47:12680–12688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nanga RP, Brender JR, Xu J, Hartman K, Subramanian V, Ramamoorthy A (2009) Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy. J Am Chem Soc 131:8252–8261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brender JR, Krishnamoorthy J, Messina GM, Deb A, Vivekanandan S, La Rosa C, Penner-Hahn JE, Ramamoorthy A (2013) Zinc stabilization of prefibrillar oligomers of human islet amyloid polypeptide. Chem Commun (Camb) 49:3339–3341

    Article  CAS  Google Scholar 

  11. Pithadia AS, Bhunia A, Sribalan R, Padmini V, Fierke CA, Ramamoorthy A (2016) Influence of a curcumin derivative on hIAPP aggregation in the absence and presence of lipid membranes. Chem Commun (Camb) 52:942–945

    Article  CAS  Google Scholar 

  12. Brender JR, Salamekh S, Ramamoorthy A (2012) Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res 45:454–462

    Article  CAS  PubMed  Google Scholar 

  13. Brender JR, Krishnamoorthy J, Sciacca MF, Vivekanandan S, D'Urso L, Chen J, La Rosa C, Ramamoorthy A (2015) Probing the sources of the apparent irreproducibility of amyloid formation: drastic changes in kinetics and a switch in mechanism due to micellelike oligomer formation at critical concentrations of IAPP. J Phys Chem B 119:2886–2896

    Article  CAS  PubMed  Google Scholar 

  14. Norouzi S, Adulcikas J, Sohal SS, Myers S (2017) Zinc transporters and insulin resistance: therapeutic implications for type 2 diabetes and metabolic disease. J Biomed Sci 24:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li LB, Wang ZY (2016) Disruption of brain zinc homeostasis promotes the pathophysiological progress of Alzheimer’s disease. Histol Histopathol 31:623–627

    CAS  PubMed  Google Scholar 

  16. Wang T, Wang CY, Shan ZY, Teng WP, Wang ZY (2012) Clioquinol reduces zinc accumulation in neuritic plaques and inhibits the amyloidogenic pathway in AbetaPP/PS1 transgenic mouse brain. J Alzheimers Dis 29:549–559

    Article  CAS  PubMed  Google Scholar 

  17. Myers SA (2015) Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int J Endocrinol 2015:167503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wineman-Fisher V, Miller Y (2017) Insight into a new binding site of zinc ions in fibrillar amylin. ACS Chem Neurosci 8:2078–2087

    Article  CAS  PubMed  Google Scholar 

  19. Nedumpully-Govindan P, Ding F (2015) Inhibition of IAPP aggregation by insulin depends on the insulin oligomeric state regulated by zinc ion concentration. Sci Rep 5:8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hay DL (2017) Amylin. Headache 57(Suppl 2):89–96

    Article  PubMed  Google Scholar 

  21. Erthal LC, Marques AF, Almeida FC, Melo GL, Carvalho CM, Palmieri LC, Cabral KM, Fontes GN, Lima LM (2016) Regulation of the assembly and amyloid aggregation of murine amylin by zinc. Biophys Chem 218:58–70

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S, Liu H, Chuang CL, Li X, Au M, Zhang L, Phillips AR, Scott DW, Cooper GJ (2014) The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet beta cells. FASEB 28(12):5083–5096

    Article  CAS  Google Scholar 

  23. Rodriguez Camargo DC, Tripsianes K, Buday K, Franko A, Gobl C, Hartlmuller C, Sarkar R, Aichler M, Mettenleiter G, Schulz M, Boddrich A, Erck C, Martens H, Walch AK, Madl T, Wanker EE, Conrad M, de Angelis MH, Reif B (2017) The redox environment triggers conformational changes and aggregation of hIAPP in type II diabetes. Sci Rep 7:44041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson KH, O'Brien TD, Betsholtz C, Westermark P (1989) Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Engl J Med 321:513–518

    Article  CAS  PubMed  Google Scholar 

  25. Nedumpully-Govindan P, Yang Y, Andorfer R, Cao W, Ding F (2015) Promotion or inhibition of islet amyloid polypeptide aggregation by zinc coordination depends on its relative concentration. Biochemistry 54:7335–7344

    Article  CAS  PubMed  Google Scholar 

  26. Brender JR, Hartman K, Nanga RP, Popovych N, de la Salud Bea R, Vivekanandan S, Marsh EN, Ramamoorthy A (2010) Role of zinc in human islet amyloid polypeptide aggregation. J Am Chem Soc 132:8973–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salamekh S, Brender JR, Hyung SJ, Nanga RP, Vivekanandan S, Ruotolo BT, Ramamoorthy A (2011) A two-site mechanism for the inhibition of IAPP amyloidogenesis by zinc. J Mol Biol 410:294–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beck MW, Derrick JS, Suh JM, Kim M, Korshavn KJ, Kerr RA, Cho WJ, Larsen SD, Ruotolo BT, Ramamoorthy A, Lim MH (2017) Minor structural variations of small molecules tune regulatory activities toward pathological factors in Alzheimer’s disease. ChemMedChem 12:1828–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee S, Zheng X, Krishnamoorthy J, Savelieff MG, Park HM, Brender JR, Kim JH, Derrick JS, Kochi A, Lee HJ, Kim C, Ramamoorthy A, Bowers MT, Lim MH (2014) Rational design of a structural framework with potential use to develop chemical reagents that target and modulate multiple facets of Alzheimer’s disease. J Am Chem Soc 136:299–310

    Article  CAS  PubMed  Google Scholar 

  30. Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53:1549–1551

    Article  CAS  PubMed  Google Scholar 

  31. Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K (2014) Effects of zinc supplementation and zinc chelation on in vitro beta-cell function in INS-1E cells. BMC Res Notes 7:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanian SL, Hull RL, Zraika S, Aston-Mourney K, Udayasankar J, Kahn SE (2012) cJUN N-terminal kinase (JNK) activation mediates islet amyloid-induced beta cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets. Diabetologia 55:166–174

    Article  CAS  PubMed  Google Scholar 

  34. Zhao T, Bai J, Zou Q, Chen F, Xie Y (2017) Insulin in combination with cisplatin induces the apoptosis of ovarian cancer cells via p53 and JNK activation. Mol Med Rep 16:9095–9101

    Article  CAS  PubMed  Google Scholar 

  35. Guan FY, Gu J, Li W, Zhang M, Ji Y, Li J, Chen L, Hatch GM (2014) Compound K protects pancreatic islet cells against apoptosis through inhibition of the AMPK/JNK pathway in type 2 diabetic mice and in MIN6 beta-cells. Life Sci 107:42–49

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Program on Key Basic Research Project (973 Program) (2012CB722405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-You Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Wang, ZY. Zinc Chelator Inhibits Zinc-Induced Islet Amyloid Polypeptide Deposition and Apoptosis in INS-1 Cells. Biol Trace Elem Res 189, 201–208 (2019). https://doi.org/10.1007/s12011-018-1444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1444-5

Keywords

Navigation