Skip to main content

Advertisement

Log in

Comparing the Effects of Chitosan Scaffolds Containing Various Divalent Metal Phosphates on Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Inducing the differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) proceeds with low efficiency, which greatly limits clinical applications. Divalent metal elements play an important role in osteoinductivity for bone remodeling because they can simulate bone formation and decrease bone resorption. The purpose of this study was to investigate the effect of some divalent metal phosphates on osteogenic differentiation from human exfoliated deciduous teeth. These divalent metal ions can be gradually released from the scaffold into the culture medium and continually induce osteoblastic differentiation. Experimental results revealed that SHEDs cultured in chitosan scaffolds containing divalent metal phosphates had notably increased osteoblastic differentiation compared with cells cultured without divalent metal phosphates. This effect was due to the high activity of alkaline phosphatase, as well as the bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, VEGF, and Ang-1, shown through RT-PCR and bone-related protein immunocytochemistry stains. A calcium-content assay further revealed significant enhancement of deposited minerals on the scaffolds after 21 days of culture, particularly for magnesium phosphate and zinc phosphate. Thus, divalent metals, except for barium phosphate, effectively promoted SHED cell differentiation and osteoblastic cell maturation. This study demonstrated that the divalent metal elements magnesium, strontium, and zinc could effectively induce SHED osteoblastic differentiation for use in tissue engineering and bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luo T, Wu C, Zhang Y (2012) The in vivo osteogenesis of Mg or Zr-modified silicate-based bioceramic spheres. J Biomed Mater Res A 100(9):2269–2277. https://doi.org/10.1002/jbm.a.34161

    Article  PubMed  CAS  Google Scholar 

  2. Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10(5):2269–2281. https://doi.org/10.1016/j.actbio.2014.01.001

    Article  PubMed  CAS  Google Scholar 

  3. Annibali S, Cristalli MP, Tonoli F, Polimeni A (2014) Stem cells derived from human exfoliated deciduous teeth: a narrative synthesis of literature. Eur Rev Med Pharmacol Sci 8:2863–2881

    Google Scholar 

  4. Su WT, Pan YJ (2016) Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds. J Neural Eng 13(4):46005. https://doi.org/10.1088/1741-2560/13/4/046005

    Article  Google Scholar 

  5. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. PANS 100(10):5807–5812. https://doi.org/10.1073/pnas.0937635100

    Article  CAS  Google Scholar 

  6. Vitale-Brovarone C, Baino F, Miola M, Mortera R, Onida B, Verne E (2009) Glassceramic scaffolds containing silica mesophases for bone grafting and drug delivery. J Mater Sci Mater Med 20(3):809–820. https://doi.org/10.1007/s10856-008-3635-7

    Article  PubMed  CAS  Google Scholar 

  7. Wu C, Zhou Y, Lin C, Chang J, Xiao Y (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8(10):3805–3815. https://doi.org/10.1016/j.actbio.2012.06.023

    Article  PubMed  CAS  Google Scholar 

  8. Zhu Y, Li X, Yang J, Wang S, Gao H, Hanagata N (2011) Composition–structure–property relationships of the CaO–MxOy–SiO2–P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem 21(25):9208–9218. https://doi.org/10.1039/c1jm10838g

    Article  CAS  Google Scholar 

  9. Wang X, Li X, Ito A, Sogo Y (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 7(10):3638–3644. https://doi.org/10.1016/j.actbio.2011.06.029

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi M, Yamaguchi R (1986) Action of zinc on bone metabolism in rats: increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol 35(5):773–777

    Article  PubMed  CAS  Google Scholar 

  11. Hall SL, Dimai HP, Farley JR (1999) Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int 64(2):163–172. https://doi.org/10.1007/s002239900597

    Article  PubMed  CAS  Google Scholar 

  12. Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS (2010) Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract 4(5):356–361. https://doi.org/10.4162/nrp.2010.4.5.356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vormann J (2003) Magnesium: nutrition and metabolism. Mol Asp Med 24(1-3):27–37. https://doi.org/10.1016/S0098-2997(02)00089-4

    Article  CAS  Google Scholar 

  14. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62(2):175–184. https://doi.org/10.1002/jbm.10270

    Article  PubMed  CAS  Google Scholar 

  15. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, Takahashi J, Matsuura N (2002) Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 62(1):99–105. https://doi.org/10.1002/jbm.10220

    Article  PubMed  CAS  Google Scholar 

  16. Beattie JH, Avenell A (1992) Trace element nutrition and bone metabolism. Nutr Res Rev 5(01):167–188. https://doi.org/10.1079/NRR19920013

    Article  PubMed  CAS  Google Scholar 

  17. Kim TG, Shin H, Lim DW (2012) Biomimetic scaffolds for tissue engineering. Adv Funct Mater 22:2446–2468

    Article  CAS  Google Scholar 

  18. Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J (2012) The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using beta-CaSiO3/ beta-Ca3(PO4)2 composite bioceramics. Acta Biomater 8(1):350–360. https://doi.org/10.1016/j.actbio.2011.08.019

    Article  PubMed  CAS  Google Scholar 

  19. Su WT, Wu PS, Huang TY (2015) Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Mater Sci Eng C 46:427–434. https://doi.org/10.1016/j.msec.2014.10.076

    Article  CAS  Google Scholar 

  20. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004

    Article  PubMed  CAS  Google Scholar 

  21. Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzoli B, Mattoli V, Ngo-Anh TJ, Ciofani G (2015) Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine 10:433–445. https://doi.org/10.2147/IJN.S76329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Su WT, Wu PS, Ko CS, Huang TY (2014) Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold. Mater Sci Eng C 41:152–160. https://doi.org/10.1016/j.msec.2014.04.048

    Article  CAS  Google Scholar 

  23. Su WT, Shih YA, Ko CS (2016) Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells. J Tissue Eng Reg Med 10(6):507–517. https://doi.org/10.1002/term.1783

    Article  CAS  Google Scholar 

  24. Su WT, Chen XW (2014) Stem cells from human exfoliated deciduous teeth differentiate into functional hepatocyte-like cells by herbal medicine. Bio-Medical Mater Eng 24:2243–2247

    Google Scholar 

  25. Bhatnagar RS, Qian JJ, Wedrychowska A, Sadeghi M, Wu YM, Smith N (1999) Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen. Tissue Eng 5(1):53–65. https://doi.org/10.1089/ten.1999.5.53

    Article  PubMed  CAS  Google Scholar 

  26. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227. https://doi.org/10.1007/s11154-010-9153-1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328(1):18–26. https://doi.org/10.1016/j.canlet.2012.08.018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the PhytoHealth Corporation, Maywufa Biopharma Group, Taipei, Taiwan for providing the SHEDs. We also thank the financial support of the NTUT-MMH Joint Research Program under NTUT-MMH-No.106-08 and Ministry of Science and Technology under contract no. MOST 105-2622-E-027-031-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ta Su.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TY., Su, WT. & Chen, PH. Comparing the Effects of Chitosan Scaffolds Containing Various Divalent Metal Phosphates on Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth. Biol Trace Elem Res 185, 316–326 (2018). https://doi.org/10.1007/s12011-018-1256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1256-7

Keywords

Navigation