Skip to main content
Log in

The Level of Toxic Elements in Edible Crops from Seleniferous Area (Punjab, India)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The primary objective of the present study was to assess the level of selenium and toxic trace elements in wheat, rice, maize, and mustard from seleniferous areas of Punjab, India. The content of selenium (Se) and toxic trace elements, including aluminum (Al), arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb), and tin (Sn), in crop samples was assessed using inductively coupled plasma mass-spectrometry after microwave digestion of the samples. The obtained data demonstrate that cultivation of crops on seleniferous soils significantly increased Se level in wheat, mustard, rice, and maize by a factor of more than 590, 111, 85, and 64, respectively. The study also showed that Se exposure affected toxic metal content in crops. In particular, Se-rich wheat was characterized by a significant decrease in Al, As, Ni, Pb, and Sn levels. The level of As, Cd, Ni, Pb, and Sn was significantly decreased in Se-rich rice, whereas As content was increased. In turn, the decrease in Al, As, Cd, Ni, Pb, and Sn levels in Se-rich maize was associated with a significant elevation of Hg content. Finally, Se-rich mustard was characterized by a significant increase in Al, As, and Hg levels, while the content of Ni, Pb, and Sn was significantly lower than the control levels. These findings should be taken into account while developing the nutritional strategies for correction of Se status. At the same time, the exact mechanisms underlying the observed differences are to be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120. https://doi.org/10.1016/j.tibs.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54. https://doi.org/10.1039/C3MT00185G

    Article  CAS  PubMed  Google Scholar 

  3. SX W, Wang WZ, Zhang F et al (2014) Expression profiles of genes involved in apoptosis and selenium metabolism in articular cartilage of patients with Kashin-Beck osteoarthritis. Gene 535(2):124–130. https://doi.org/10.1016/j.gene.2013.11.050

    Article  CAS  Google Scholar 

  4. Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370(18):1756–1760. https://doi.org/10.1056/NEJMcibr1402199

    Article  CAS  PubMed  Google Scholar 

  5. Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP, Seneviratne SI, Smith P, Winkel LHE (2017) Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci 114(11):2848–2853. https://doi.org/10.1073/pnas.1611576114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bañuelos GS, Lin ZQ, Broadley M (2017) Selenium biofortification. In: Pilon-Smits E, Winkel L, Lin ZQ (eds) Selenium in plants. Plant ecophysiology, vol 11. Springer, Cham, pp 231–255 https://link.springer.com/chapter/10.1007/978-3-319-5

    Chapter  Google Scholar 

  7. Gupta UC, Gupta SC (2002) Quality of animal and human life as affected by selenium management of soils and crops. Commun Soil Sci Plant Anal 33(15-18):2537–2555. https://doi.org/10.1081/CSS-120014464

    Article  CAS  Google Scholar 

  8. Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangoulis JCR, Graham RD (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19(1):75–82. https://doi.org/10.1016/j.jtemb.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  9. Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MFS, Faisal M, Pilon-Smits EAH (2014) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386(1-2):385–394. https://doi.org/10.1007/s11104-014-2270-y

    Article  CAS  Google Scholar 

  10. Ros GH, van Rotterdam AMD, Bussink DW, Bindraban PS (2016) Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 404(1-2):99–112. https://doi.org/10.1007/s11104-016-2830-4

    Article  CAS  Google Scholar 

  11. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51(1):401–432. https://doi.org/10.1146/annurev.arplant.51.1.401

    Article  CAS  PubMed  Google Scholar 

  12. Hua S, Sheng Xu Luob YX, Luo Z, Fan C (2015) Enrichment of se in soil-crop systems in the selenium-rich region and their effects for the enrichment of heavy metals. 5th international conference on advanced design and manufacturing engineering (ICADME 2015) 795-800

  13. Lavu R, Van de Wiele T, Pratti VL et al (2013) Bioaccessibility and transformations of selenium in the human intestine: selenium-enriched crops versus food supplements. In: Bañuelos GS, Lin Z-Q, Yin X (eds) Selenium Environ Hum. Heal. CRC Press, Boca Raton, pp 44–47. https://doi.org/10.1201/b15960-22

    Chapter  Google Scholar 

  14. Lavu RVS, Van De Wiele T, Pratti VL, Tack F, du Laing G (2016) Selenium bioaccessibility in stomach, small intestine and colon: comparison between pure Se compounds, Se-enriched food crops and food supplements. Food Chem 197(Pt A):382–387. https://doi.org/10.1016/j.foodchem.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  15. Malagoli M, Schiavon M, dall’Acqua S, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00280

  16. Alam MGM, Snow ET, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308(1-3):83–96. https://doi.org/10.1016/S0048-9697(02)00651-4

    Article  CAS  PubMed  Google Scholar 

  17. Shraim AM (2017) Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arab J Chem 10:S3434–S3443. https://doi.org/10.1016/j.arabjc.2014.02.004

    Article  CAS  Google Scholar 

  18. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002

    Article  CAS  Google Scholar 

  19. R Core Team (2017) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/

  20. Sharma N, Prakash R, Srivastava A, Sadana US, Acharya R, Prakash NT, Reddy AVR (2009) Profile of selenium in soil and crops in seleniferous area of Punjab, India by neutron activation analysis. J Radioanal Nucl Chem 281(1):59–62. https://doi.org/10.1007/s10967-009-0082-y

    Article  CAS  Google Scholar 

  21. Jaiswal SK, Prakash R, Acharya R, Nathaniel TN, Reddy AVR, Tejo Prakash N (2012) Bioaccessibility of selenium from Se-rich food grains of the seleniferous region of Punjab, India as analyzed by instrumental neutron activation analysis. CyTA - J Food 10(2):160–164. https://doi.org/10.1080/19476337.2011.606479

    Article  CAS  Google Scholar 

  22. Jaiswal SK, Prakash R, Acharya R, Reddy AVR, Tejo Prakash N (2012) Selenium content in seed, oil and oil cake of Se hyperaccumulated Brassica juncea (Indian mustard) cultivated in a seleniferous region of India. Food Chem 134(1):401–404. https://doi.org/10.1016/j.foodchem.2012.02.140

    Article  CAS  Google Scholar 

  23. Cubadda F, Aureli F, Ciardullo S, D’Amato M, Raggi A, Acharya R, Reddy RAV, Prakash NT (2010) Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. J Agric Food Chem 58(4):2295–2301. https://doi.org/10.1021/jf903004a

    Article  CAS  PubMed  Google Scholar 

  24. Hawrylak B, Szymańska M (2004) Selenium as a sulphydrylic group inductor in plants. Cell Mol Biol Lett 9(2):329–336

    CAS  PubMed  Google Scholar 

  25. Kaur N, Sharma S, Kaur S, Nayyar H (2014) Selenium in agriculture: a nutrient or contaminant for crops? Arch Agron Soil Sci 60:1593–1624. https://doi.org/10.1080/03650340.2014.918258

    Article  CAS  Google Scholar 

  26. Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H, Qin H, Larssen T (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.) Environ Sci Technol 46:10040–10046. https://doi.org/10.1021/es302245r

    Article  CAS  PubMed  Google Scholar 

  27. Li YF, Zhao J, Li Y, Li H, Zhang J, Li B, Gao Y, Chen C, Luo M, Huang R, Li J (2015) The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou, China. Plant Soil 391(1-2):195–205. https://doi.org/10.1007/s11104-015-2418-4

    Article  CAS  Google Scholar 

  28. Zhao JT, Li YF, Li YY et al (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics 6(10):1951–1957. https://doi.org/10.1039/c4mt00170b

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H (2014) Interactions of mercury and selenium in soil-rice system. In: Zhang H (ed) Impacts of selenium on the biogeochemical cycles of mercury in terrestrial ecosystems in mercury mining areas. Springer, Berlin Heidelberg, pp 135–149. https://doi.org/10.1007/978-3-642-54919-9_10

    Chapter  Google Scholar 

  30. Zhou X, Yu S, Wang W et al (2014) Effects of application of selenium in soil on the formation of root surface iron plaque and mercury uptake by rice plants. J Southwest Univ (Nat Sci Ed) 36:103–107

    Google Scholar 

  31. Wang X, Tam NFY, Fu S, Ametkhan A, Ouyang Y, Ye Z (2014) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114(2):271–278. https://doi.org/10.1093/aob/mcu117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams PN, Islam S, Islam R, Jahiruddin M, Adomako E, Soliaman ARM, Rahman GKMM, Lu Y, Deacon C, Zhu YG, Meharg AA (2009) Arsenic limits trace mineral nutrition (selenium, zinc, and nickel) in Bangladesh rice grain. Environ Sci Technol 43(21):8430–8436. https://doi.org/10.1021/es901825t

    Article  CAS  PubMed  Google Scholar 

  33. Kumar A, Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.) Ecotoxicology 23(7):1153–1163. https://doi.org/10.1007/s10646-014-1257-z

    Article  CAS  PubMed  Google Scholar 

  34. Hu Y, Norton GJ, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384(1-2):131–140. https://doi.org/10.1007/s11104-014-2189-3

    Article  CAS  Google Scholar 

  35. Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329(1-2):139–153. https://doi.org/10.1007/s11104-009-0141-8

    Article  CAS  Google Scholar 

  36. Chen M, Cao L, Song X et al (2014) Effect of iron plaque and selenium on cadmium uptake and translocation in rice seedlings (Oryza sativa) grown in solution culture. Int J Agric Biol 16:1159–1164

    CAS  Google Scholar 

  37. Chen S, Zhang C, Zhang Q, Fun et al (2009) Study on interaction between selenium and mercury in the seedling stage of winter wheat. Guizhou Agric Sci 1:28–29

    Google Scholar 

  38. Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18. https://doi.org/10.1016/j.jplph.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh S, Biswas A (2017) Selenium modulates growth and thiol metabolism in wheat (Triticum aestivum L.) during arsenic stress. Am J Plant Sci 8(03):363–389. https://doi.org/10.4236/ajps.2017.83026.

    Article  CAS  Google Scholar 

  40. Zhao FJ, Lopez-Bellido FJ, Gray CW et al (2007) Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. Sci Total Environ 372(2-3):433–439. https://doi.org/10.1016/j.scitotenv.2006.09.028

    Article  CAS  PubMed  Google Scholar 

  41. Gajewska E, Drobik D, Wielanek M, Sekulska-Nalewajko J, Gocławski J, Mazur J, Skłodowska M (2013) Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biol Lett 50(2):63–76. https://doi.org/10.2478/biolet-2013-0008

    Article  Google Scholar 

  42. Landberg T, Greger M (1994) Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol Plant 90(4):637–644. https://doi.org/10.1111/j.1399-3054.1994.tb02518.x

    Article  CAS  Google Scholar 

  43. Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull Environ Contam Toxicol 56(3):419–424. https://doi.org/10.1007/s001289900060

    Article  CAS  PubMed  Google Scholar 

  44. Sun HY, Wang XY, Dai HX et al (2013) Effect of exogenous glutathione, selenium on cadmium-induced changes in cadmium, mineral concentrations, antioxidative metabolism in maize seedlings. Asian J Chem 25:2970–2976

    Article  CAS  Google Scholar 

  45. Abhishek K, Raj KR, Arora JK et al (2010) Neural network prediction of the effect of selenium on the reduction of plant uptake of cadmium. Natl Acad Sci Lett 33:83–87

    Google Scholar 

  46. Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006) Localization and speciation of selenium and mercury in Brassica juncea—implications for Se–Hg antagonism. J Anal At Spectrom 21(4):404–412. https://doi.org/10.1039/b514954a

    Article  CAS  Google Scholar 

  47. Pantola RC, Alam A (2014) Potential of Brassicaceae Burnett (mustard family; angiosperms) in phytoremediation of heavy metals. IJSR in. Environ Sci 2(4):120

    Google Scholar 

  48. Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled DD, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31(2):237–247. https://doi.org/10.1007/s11738-008-0224-9

    Article  CAS  Google Scholar 

Download references

Funding

The current investigation is supported by the Russian Foundation for Basic Research within project no. 17-55-45027 and the Department of Science and Technology, Government of India (INT/RUS/RFBR/P-252) “Localization of selenium and other trace elements in edible crops cultivated in seleniferous soils.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly V. Skalny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalnaya, M.G., Jaiswal, S.K., Prakash, R. et al. The Level of Toxic Elements in Edible Crops from Seleniferous Area (Punjab, India). Biol Trace Elem Res 184, 523–528 (2018). https://doi.org/10.1007/s12011-017-1216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1216-7

Keywords

Navigation