Skip to main content

Advertisement

Log in

Protective Effect of Selenoprotein X Against Oxidative Stress-Induced Cell Apoptosis in Human Hepatocyte (LO2) Cells via the p38 Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Msr:

Methionine sulfoxide reductase

SelX:

Selenoprotein X

ROS:

Reactive oxygen species

LO2:

Human normal hepatocyte;

p38 MAPK:

p38 mitogen-activated protein kinase

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ECL:

Electrochemiluminescence

PVDF:

Polyvinylidene fluoride

SDS:

Sodium dodecyl sulfate

SE:

Standard error

References

  1. Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4

    Article  CAS  PubMed  Google Scholar 

  2. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  3. Zhang JX, Wang XL, Vikash V, Ye Q, Wu DD, Liu YL (2016) ROS and ROS-mediated cellular signaling. Oxid Med Cell Longe 4350965

  4. Ozsurekci Y, Aykac K (2016) Oxidative stress related diseases in newborns. Oxid Med Cell Longe 2768365

  5. Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942

    Article  CAS  PubMed  Google Scholar 

  6. Ravingerová T, Barancík M, Strnisková M (2003) Mitogen activated protein kinase: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247:127–138

    Article  PubMed  Google Scholar 

  7. Abdel-Misih SR, Bloomston M (2010) Liver anatomy. Surg Clin N Am 90:643–653

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235

    Article  CAS  PubMed  Google Scholar 

  9. Maton A, Hopkins J, Charles WM, Susan M, Maryanna QW, David L, Jill DW (1993) Human biology and health. Prentice Hall, Englewood Cliffs

    Google Scholar 

  10. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  11. Patel T, Gores GJ (1995) Apoptosis and hepatobiliary disease. Hepatology 21:1725–1741

    CAS  PubMed  Google Scholar 

  12. Picot CR, Perichon M, Lundberg KC, Friguet B, Szweda LI, Petropoulos I (2006) Alterations in mitochondrial and cytosolic methionine sulfoxide reductase activity during cardiac ischemia and reperfusion. Exp Gerontol 41:663–667

    Article  CAS  PubMed  Google Scholar 

  13. Han YH, Zhang ZW, Su J, Zhang B, Li S, Xu SW (2012) Effects of chicken selenoprotein W on H2O2-induced apoptosis in CHO-K1 cells. Biol Trace Elem Res 147:395–402

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Liu Y, Xue G, Zhang L, Zhang L, Shao S (2016) Diazoxide protects L6 skeletal myoblasts from H2O2-induced apoptosis via the phosphatidylinositol-3 kinase/Akt pathway. Inflamm Res 65:53–60

    Article  PubMed  Google Scholar 

  15. Tang JY, Cao L, Li Q, Wang LQ, Jia G, Liu GM, Chen XL, Cai JY, Shang HY, Zhao H (2016) Selenoprotein X gene knockdown aggravated H2O2-induced apoptosis in liver LO2 cells. Biol Trace Elem Res 173:71–78

    Article  CAS  PubMed  Google Scholar 

  16. Morris D, Khurasany M, Nguyen T, Kim J, Guilford F, Mehta R, Gray D, Saviola B, Venketaraman V (2013) Glutathione and infection, BBA-Gen. Subjects 1830:3329–3349

    Article  CAS  Google Scholar 

  17. Papp LV, Holmgren A, Khanna KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Sign 12:793–795

    Article  CAS  Google Scholar 

  18. Lei XG, Cheng WH (2005) New roles for an old selenoenzyme: evidence from glutathione peroxidase-1 null and overexpressing mice. J Nutr 135:2295–2298

    CAS  PubMed  Google Scholar 

  19. Marchetti MA, Pizarro GO, Sagher D, Deamicis C, Brot N, Hejtmancik JF, Weissbach H, Kantorow M (2005) Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells. Invest Ophth Vis Sci 46:2107–2112

    Article  Google Scholar 

  20. Lee BC, Dikiy A, Kim HY, Gladyshev VN (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta 1790:1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim HY, Gladyshev VN (2004) Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem Bioph Res Co 320:1277–1283

    Article  CAS  Google Scholar 

  22. Moghadaszadeh B, Beggs AH (2006) Selenoproteins and their impact on human health through diverse physiological pathways. Physiology 21:307–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:15036–15040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia Y, Zhou J, Liu HM, Huang KX (2014) Effect of methionine sulfoxide reductase B1 (SelR) gene silencing on peroxynitrite-induced F-actin disruption in human lens epithelial cells. Biochem Bioph Res Co 443:876–881

    Article  CAS  Google Scholar 

  25. Jia Y, Li Y, Du S, Huang KX (2012) Involvement of MsrB1 in the regulation of redox balance and inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells. Exp Eye Res 100:7–16

    Article  CAS  PubMed  Google Scholar 

  26. Zhou YJ, Zhang SP, Liu CW, Cai YQ (2009) The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicol in Vitro 23:288–294

    Article  PubMed  Google Scholar 

  27. Liu Y, Zhao H, Zhang QS, Tang JY, Li K, Xia XJ, Wang KN, Li K, Lei XG (2012) Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs. J Nutr 142:1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang XF, Tang JY, Xu JY, Jia G, Liu GM, Chen XL, Cai JY, Shang HY, Zhao H (2016) Supranutritional dietary selenium induced hyperinsulinemia and dyslipidemia via affected expression of selenoprotein genes and insulin signal-related genes in broiler. RSC Adv 6:84990–84998

    Article  CAS  Google Scholar 

  29. Zhao H, Tang JY, Cao L, Zhou JC, Jia G, Liu GM, Chen XL, Wang KN (2015) Gene cloning, site-directed mutagenesis, prokaryotic expression and polyclonal antibody preparation of porcine selenoprotein X. Chinese Journal of Animal Nutrition 27:1485–1491

    Google Scholar 

  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  31. Oien DB, Moskovitz J (2009) Selenium and the methionine sulfoxide reductase system. Molecules 14:2337–2344

    Article  CAS  PubMed  Google Scholar 

  32. Picot CR, Petropoulos I, Perichon M, Moreau M, Nizard C, Friguet B (2005) Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress. Free Radic Biol Med 39:1332–1341

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Jia Y, Zhou J, Huang KX (2013) Effect of methionine sulfoxide reductase B1 silencing on high-glucose-induced apoptosis of human lens epithelial cells. Life Sci 92:193–201

    Article  CAS  PubMed  Google Scholar 

  34. Fomenko DE, Novoselov SV, Natarajan SK, Lee BC, Koc A, Carlson BA, Lee TH, Kim HY, Hatfield DL, Gladyshev VN (2009) MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. J Biol Chem 284:5986–5993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manuele MG, Arcos MLB, Davicino R, Ferraro G, Cremaschi G, Anesini C (2010) Limonene exerts antiproliferative effects and increases nitric oxide levels on a lymphoma cell line by dual mechanism of the ERK pathway: relationship with oxidative stress. Cancer Investig 2:135–145

    Google Scholar 

  36. Varma SD, Kovtun S, Hegde KR (2011) Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists. Eye Contact Lens 37:233–245

    Article  PubMed  PubMed Central  Google Scholar 

  37. Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Sign 14:1437–1448

    Article  CAS  Google Scholar 

  38. Zhang H, Gomez AM, Wang X, Yan Y, Zheng M, Cheng H (2013) ROS regulation of microdomain Ca2+ signalling at the dyads. Cardiovasc Res 98:248–258

    Article  CAS  PubMed  Google Scholar 

  39. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637

    Article  CAS  PubMed  Google Scholar 

  41. Petit A, Mwale F, Zukor DJ, Catelas I, Antoniou J, Huk OL (2004) Effect of cobalt and chromium ions on bcl-2, bax, caspase-3, and caspase-8 expression in human U937 macrophages. Biomaterials 25:2013–2018

    Article  CAS  PubMed  Google Scholar 

  42. Bai J, Zheng Y, Wang G, Liu P (2016) Protective effect of D-Limonene against oxidative stress-induced cell damage in human lens epithelial cells via the p38 pathway. Oxid Med Cell Longe: 5962832

  43. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  44. Kim DS, Kim JH, Lee GH, Kim HT, Lim JM, Chae SW, Chae HJ, Kim HR (2010) p38 mitogen-activated protein kinase is involved in endoplasmic reticulum stress induced cell death and autophagy in human gingival fibroblasts. Biol Pharm Bull 33:545–549

    Article  CAS  PubMed  Google Scholar 

  45. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  CAS  PubMed  Google Scholar 

  46. Liu BR, Yuan B, Zhang L, Mu WM, Wang CM (2015) ROS/p38/p53/Puma signaling pathway is involved in emodin-induced apoptosis of human colorectal cancer cells. Int J Clin Exp Med 8:15413–15422

    PubMed  PubMed Central  Google Scholar 

  47. Cardaci S, Filomeni G, Rotilio G, Ciriolo MR (2010) p38 (MAPK)/p53 signalling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration. Biochem J 430:439–451

    Article  CAS  PubMed  Google Scholar 

  48. Bai J, Zheng Y, Dong L, Cai XH, Wang G, Liu P (2015) Inhibition of p38 mitogen-activated protein kinase phosphorylation decreases H2O2-induced apoptosis in human lens epithelial cells. Graef Arch Clin Exp 253:1933–1940

    Article  CAS  Google Scholar 

  49. Kim JY, Lee JS, Han YS, Lee JH, Bae I, Yoon YM, Kwon SM, Lee SH (2015) Pretreatment with lycopene attenuates oxidative stress-induced apoptosis in human mesenchymal stem cells. Biomol Ther 23:517–524

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported partly by the National Natural Science Foundation of China (No 31272468 and 31072043) and by a Research Funding provided by Sichuan Longda animal husbandry science and technology co., Ltd. (No: 2015SCLD001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhao.

Ethics declarations

Conflict of Interest

All authors read and approved the final manuscript. The authors have no conflicts of interest to disclose.

Additional information

Ai-Hua He is the co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JY., He, AH., Jia, G. et al. Protective Effect of Selenoprotein X Against Oxidative Stress-Induced Cell Apoptosis in Human Hepatocyte (LO2) Cells via the p38 Pathway. Biol Trace Elem Res 181, 44–53 (2018). https://doi.org/10.1007/s12011-017-1025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1025-z

Keywords

Navigation