Skip to main content
Log in

Protective Role of Zinc and Magnesium against Cadmium Nephrotoxicity in Male Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cd is a toxic metal that has a destructive impact on most organ systems. This work aims to determine Zn or Mg protective effects against Cd renal toxicity. In this study, rats were divided into six groups. The Cd group was treated with 1 mg Cd/kg, and the control group received 0.5 cm3 normal saline, intraperitoneally. The other four groups received one of the following dosages of 1 mg/kg Cd + 0.5 mg/kg Zn, 1 mg/kg Cd + 1.5 mg/kg Zn, 1 mg/kg Cd + 0.5 mg/kg Mg, or 1 mg/kg Cd + 1.5 mg/kg Mg through IP injection for 3 weeks. Kidney malondialdehyde (MDA) and serum sodium, potassium, urea, creatinine, and protein were measured. Light microscopic examination was used for histological studies. Cd reduced serum creatinine and protein, and increased urea, sodium, and potassium. Moreover, Cd exposure caused a significant enhancement in MDA levels as well as histological damage in kidneys. Zn or Mg treatment prevented and reversed toxic alterations induced by Cd. These results suggest that Zn and Mg may have protective effects against Cd renal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Moneim WM, Ghafeer HH (2007) The potential protective effect of natural honey against cadmium-indused hepatotoxicity and nephrotoxicity. Mansoura J Forensic Med Clin Toxicol 15:75–92

    Google Scholar 

  2. Akesson A (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Medicine 113:1627–1631

    Google Scholar 

  3. Asagaba SO, Obi FO (2004) Effects of oral cadmium exposure on renal glomerular and tubular functions in the rat. J Appl Sci Environ Manag 8:29–32

    Google Scholar 

  4. Aughey E, Fell GS, Scottt R, Black M (1984) Histopathology of early effects of oral cadmium in the rat kidney. Environ Health Perspect 54:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bernard A (2004) Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals 17:519–522

    Article  CAS  PubMed  Google Scholar 

  6. Brzoska MM, Kaminski M, Supernak-Bobko D, Zwierz K, Moniuszko-Jakoniuk J (2003) Changes in the structure and function of the kidney of rats chronically exposed to cadmium. I Biochemical and histopathological studies Archives of Toxicol 77:345–348

    Google Scholar 

  7. Brzoska MM, Kaminski M, Supernak-Bobko D, Zwierz K, Moniuszko-Jakoniuk J (2004) Changes in the structure and function of the kidney of rats chronically exposed to cadmium. II. Histoenzymatic studies. Arch Toxicol 78:226–231

    Article  CAS  PubMed  Google Scholar 

  8. Brzóska MM, Majewskab K, Kupraszewicz E (2010) Effects of low, moderate, and relatively high chronic exposure to cadmium on long bones susceptibility to fractures in male rats. Environ Toxicol Pharmacol 29

  9. Brzóska MM et al. (2007) Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicol 237:89–103

    Article  Google Scholar 

  10. Buha A, Bulat Z, Dukić-Ćosić D, Matović V (2012) Effects of oral and intraperitoneal magnesium treatment against cadmium-induced oxidative stress in plasma of rats. Arh Hig Rada Toksikol 63:247–254

    Article  CAS  PubMed  Google Scholar 

  11. Bulat ZP, Djukić-Cosić D, Malicević Z, Bulat P, Matović V (2008) Zinc or magnesium supplementation modulates cd intoxication in blood, kidney, spleen, and bone of rabbits. Biol Trace Elem Res 124:110–114

    Article  CAS  PubMed  Google Scholar 

  12. Chater S, Doukib T, Garrelc C, Favier A, Sakly M, Abdelmelek H (2008) Cadmium-induced oxidative stress and DNA damage in kidney of pregnant female rats. Comptes Rendus Biologies 331:426–432

    Article  CAS  PubMed  Google Scholar 

  13. Chowdhury BA, Friel JK, Chandar RK (1987) Cadmium-induced immunopathology is prevented by zinc administration in mice. Nutr and Immunology 117:1788–1794

    CAS  Google Scholar 

  14. Djukić-Cosić D, Ninković M, Malicević Z, Matović V, Soldatović D (2007) Effect of magnesium pretreatment on reduced glutathione levels in tissues of mice exposed to acute and subacute cadmium intoxication: a time course study. Magnes Res 20:177–186

    PubMed  Google Scholar 

  15. Doyle JJ, Bernhoft RA, Sandstead HH (1975) The effects of a low level of dietary cadmium on blood pressure, ′24Na, ′42K, and water retention in growing rats. J Lab Clin Med 86:57–59

    CAS  PubMed  Google Scholar 

  16. Drury RA, Wallington EA (1980) Carleton’s histological techniques. Oxford University Press, London, New York Toronto

    Google Scholar 

  17. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters, and semen quality of male rats: protective role of vitamin E and b-carotene. Food Chem Toxicol 42:1563–1571

    Article  CAS  PubMed  Google Scholar 

  18. El-Refaiy AI, Eissa FI (2012) Protective effects of ascorbic acid and zinc against cadmium-induced histopathological, histochemical, and cytogenetic changes in rats. Comunicata Scientiae 3:162–180

    CAS  Google Scholar 

  19. El-Shahat AE, Gabr A, Meki AR, Mehana E (2009) Altered testicular morphology and oxidative stress induced by cadmium in experimental rats and protective effect of simultaneous green tea extract. Int J Morphol 27:757–764

    Article  Google Scholar 

  20. El-Sokkary GH, Nafady AA, Shabash EH (2009) Melatonin ameliorates cadmium-induced oxidative damage and morphological changes in the kidney of rat. The Open Neuroendocrinology Journal 2:1–9

    Article  CAS  Google Scholar 

  21. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–413

    Article  CAS  PubMed  Google Scholar 

  22. Fouad AA, Qureshi HA, Yacoubi MT, Al-Melhim WN (2009) Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity. Food Chem Toxicol 47:2863–2870

    Article  CAS  PubMed  Google Scholar 

  23. Gherian MG (1980) Biliary excretion of cadmium in rat. III. Effects of chelating agents and change in intracellular thiol content on biliary transport and tissue distribution of cadmium. J Toxicol Environ Health 6:379–391

    Article  Google Scholar 

  24. Grosicki A (2012) Influence of magnesium on the deposition of cadmium in rats. Bull Vet Inst Pulawy 56:591–594

    Article  Google Scholar 

  25. Groten JP, Sinkeldam EJ, Muys T, Luten JB, Van Bladeren PJ (1991) Interaction of dietary Ca, P, Mg, Mn, Cu, Fe, Zn, and Se with the accumulation and oral toxicity of cadmium in rats. Food Chem Toxicol 29:249–258

    Article  CAS  PubMed  Google Scholar 

  26. Gubrelay U, Mehta A, Singh M, Flora SJ (2004) Comparative hepatic and renal toxicity of cadmium in male and female rats. J Environ Biol 25:65–73

    CAS  PubMed  Google Scholar 

  27. Jacobs RM, Jones AO, Fox MR, Lener J (1983) Effects of dietary zinc, manganese, and copper on tissue accumulation of cadmium by Japanese quail. Proc Soc Exp Biol Med 172:34–37

    Article  CAS  PubMed  Google Scholar 

  28. Jacquillet G et al. (2006) Zinc protects renal function during cadmium intoxication in the rat. American Journal of Physiology. Renal Physiol 290:F127–F137

    Article  CAS  Google Scholar 

  29. Jihen EH, Fatima H, Nouha A, Baati T, Imed M, Abdelhamid K (2010) Cadmium retention increase: a probable key mechanism of the protective effect of zinc on cadmium-induced toxicity in the kidney. Toxicology Lett 196:104–109

    Article  CAS  Google Scholar 

  30. Jungwirth A, Paulmichl M, Lang F (1990) Cadmium enhances potassium conductance in cultured renal epitheloid (MDCK) cells. Kidney Inter 37:1477–1486

    Article  CAS  Google Scholar 

  31. Kara H, Karatas F, Canatan H (2002) Effect of single dose cadmium chloride administration on oxidative stress in male and female rats. Turk J Vet Anim Sci 29:37–42

    Google Scholar 

  32. Kido T et al. (1992) The renal handling of sodium and potassium in environmental cadmium-exposed subjects with renal dysfunction. Toxicology Lett 61:205–212

    Article  CAS  Google Scholar 

  33. Kulikowska-Karpinska E, R. WM, Moniuszko-Jakoniuk J, Jurczuk M (1996) The effect of zinc on cadmium accumulation in selected tissues of experimental rats exposed to cadmium sulphate. Bromotologia I Chemia Tokskologiczna 29:29–237

    Google Scholar 

  34. Liu X, Jin T, Nordberg GF, Sjöström M, Zhou Y (1994) Influence of zinc and copper administration on metal disposition in rats with cadmium-metallothionein-induced nephrotoxicity. Toxicol Appl Pharmacol 126:84–90

    Article  CAS  PubMed  Google Scholar 

  35. Liu XY, Jin TY, Nordberg GF, Rännar S, Sjöström M, Zhou Y (1999) A multivariate study of protective effects of Zn and Cu against nephrotoxicity induced by cadmium metallothionein in rats. Toxicol Appl Pharmacol 114:239–244

    Article  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr LA, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  37. Mahran AA, Osman HEH, El-Mawla AMAA, Attia AM (2011) Protective effect of zinc (Zn) on the histology and histochemistry of liver and kidney of albino rat treated with cadmium. J Cytol Histol 2:2–9

    Google Scholar 

  38. Masoomi Karimi M, Jafari Sani M, Mahmudabadi A, Jafari Sani A, Khatibi SR (2012) Effect of acute toxicity of cadmium in mice kidney cells. Iranian Journal of Toxicology 6:691–698

    Google Scholar 

  39. Matovic V, Bulat ZP, Dukic-cosic D, Soldatovic D (2010) Zinc, copper, or magnesium supplementation against cadmium toxicity. Nova Science Pub Inc, New York

    Google Scholar 

  40. Matović V, Buha A, Bulat Z, Dukić-Ćosić D (2011) Cadmium toxicity revisited focus on oxidative stress induction and interactions with zinc and magnesium. Arh Hig Rada Toksikol 61:65–76

    Google Scholar 

  41. Matović V, Buha A, Bulat Z, Ðukić-Ćosić D, Miljković M, Ivanišević J, Kotur-Stevuljević J (2012) Route-dependent effects of cadmium/cadmium and magnesium acute treatment on parameters of oxidative stress in rat liver. Food Chem Toxicol 50:552–557

    Article  PubMed  Google Scholar 

  42. Matović V, Plamenac M, Bulat Z, Djukić-Cosić D, Soldatović D (2010) Antagonism between cadmium and magnesium: a possible role of magnesium in therapy of cadmium intoxication. Magnes Res 23:19–26

    PubMed  Google Scholar 

  43. Mcgeer JC, Niyogi S, Smith DS (2011) Cadmium. Fish Physiology, Part B 31:125–184

    Article  Google Scholar 

  44. Merali Z, Singhal RL (1975) Influence of chronic exposure to cadmium on hepatic and renal cyclic AMP-protein kinase system. Toxicol 4:207–214

    Article  CAS  Google Scholar 

  45. Merali Z, Singhal RL (1976) Prevention by zinc of cadmium-induced alterations in pancreatic and hepatic functions. Br J Pharmacol 57:573–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Messaoudi I, El-Heni J, Hammouda F, Saïd K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161

    Article  CAS  PubMed  Google Scholar 

  47. Moshtaghie AA, Raisi A, Goodarzi H (1991) A study of the cadmium toxicity on serum proteins and its relation to proteinuuria in male rats. Journal of Islamic Academy of Sciences 4:192–194

    Google Scholar 

  48. Nishiyama S, Nakamura K (1984) Effect of cadmium on plasma aldosterone and serum corticosterone concentrations in male rats. Toxicol Appl Pharmacol 76:420–423

    Article  CAS  PubMed  Google Scholar 

  49. Noël L, Huynh-Delerme C, Guérin T, Huet H, Frémy JM, Kolf-Clauw M (2006) Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model. BiomMetals 19:473–481

    Article  Google Scholar 

  50. Obianime AW, Roberts II (2009) Antioxidants, cadmium-induced toxicity, serum biochemical and the histological abnormalities of the kidney and testes of the male Wistar rats. Niger J Physiol Sci 24:177–185

    CAS  PubMed  Google Scholar 

  51. Perry HM, Erlanger MW, Blotcky AJ, Perry EF (1980) Inhibition of cadmium-induced hypertension in rats. Sci Total Environ 14:153–166

    Article  CAS  PubMed  Google Scholar 

  52. Quamme GA (1992) Free cadmium activity in renal epithelial cells is enhanced by Mg2+ depletion. Kidney Int 41:1237–1240

    Article  CAS  PubMed  Google Scholar 

  53. Roels HA, Lauwerys RR, Buchet JP, Bernard AM, Vos A, Oversteyns M (1982) Health significance of cadmium induced renal dysfunction: a five-year follow up. Br J Ind Med 46:755–762

    Google Scholar 

  54. Shaikh ZA, Tang W, Sadovic S (1999) Zinc-induced protection against cadmium-metallothionein nephrotoxicity depends on glutathione status. Advances in Life Sciences 151:467–468

    Google Scholar 

  55. Soldatovic D, Vujanovic D, Matovic V, Plamenac Z (1997) Compared effects of high oral Mg supplements and of EDTA chelating agent on chronic lead intoxication in rabbits. Magnes Res 10:127–132

    CAS  PubMed  Google Scholar 

  56. Staneviciene I, Sadauskiene I, Lesauskaite V, Ivanoviene L, Kasauskas A, Ivanov L (2008) Subacute effects of cadmium and zinc ions on protein synthesis and cell death in mouse liver. Medicina 44:44–46

    Google Scholar 

  57. Stonard MD, Webb M (1976) Influence of dietary cadmium on the distribution of the essential metals copper, zinc, and iron in tissues of the rat. Chem Biol Interact 15:349–363

    Article  CAS  PubMed  Google Scholar 

  58. Sugawara C, Sugawara N, Miyake H (1981) Decrease of plasma vitamin a, albumin and zinc in cadmium-treated rats. Toxicology Lett 8:323–328

    Article  CAS  Google Scholar 

  59. Waalkes MP, Diwan BA (1999) Cadmium-induced inhibition of the growth and metastasis of human lung carcinoma xenografts: role of apoptosis. Carcinogenesis 20(1):65–70

    Article  CAS  PubMed  Google Scholar 

  60. Weaver VM et al. (2011) Differences in urine cadmium associations with kidney outcomes based on serum creatinine and cystatin C. Environ res Section A 111:1236–1240

    Article  CAS  Google Scholar 

  61. Włostowski T (1992) On metallothionein, cadmium, copper and zinc relationships in the liver and kidney of adult rats. Comp Biochem Physiol C 103:35–41

    Article  PubMed  Google Scholar 

  62. Xiao P, Jia XD, Zhong WJ, Jin XP, Nordberg G (2002) Restorative effects of zinc and selenium on cadmium-induced kidney oxidative damage in rats. Biomed Environ Sci 15:67–73

    PubMed  Google Scholar 

  63. Zaki MS, Abd El-Rahman HH, Mohamed MI, Abd El-Magid SS (2013) Some studies in Barki sheep intoxicated with cadmium. Life Sci Journal 10:1202–1204

    Google Scholar 

  64. Zhang D, Gao J, Zhang K, Liu X, Li J (2012) Effects of chronic cadmium poisoning on Zn, Cu, Fe, Ca, and metallothionein in liver and kidney of rats. Biol Trace Elem Res 149:1–5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasim Babaknejad.

Ethics declarations

All experiments were performed in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80–23), revised 1996.

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaknejad, N., Moshtaghie, A.A., Nayeri, H. et al. Protective Role of Zinc and Magnesium against Cadmium Nephrotoxicity in Male Wistar Rats. Biol Trace Elem Res 174, 112–120 (2016). https://doi.org/10.1007/s12011-016-0671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0671-x

Keywords

Navigation