Skip to main content

Advertisement

Log in

Selenium Plays a Protective Role in Staphylococcus aureus-Induced Endometritis in the Uterine Tissue of Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The essential trace element selenium (Se) modulates the functions of many regulatory proteins in signal transduction, conferring benefits in inflammatory diseases. Endometritis is a reproductive obstacle disease both in humans and animals. Staphylococcus aureus is the major pathogen that causes endometritis. The present study analyzes the protection and mechanism of Se-methylselenocysteine (MSC) and methylseleninic acid (MSA) on S. aureus-induced endometritis. An atomic fluorescence spectrophotometry study showed that the uterine Se content increased with the addition of MSC and MSA. Histopathology observation and TUNEL detection showed that Se supplementation displayed a greater defense against uterine inflammatory damage. The quantitative PCR (qPCR) and ELISA analyses showed that the expressions of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) increased with S. aureus infection and decreased with the addition of MSC and MSA. The Toll-like receptor 2 (TLR2) expression showed the same status as the inflammatory cytokines. The Western blot results showed that the increased phosphorylation of IκBα and NF-κB p65 was also reduced by the addition of MSC and MSA. The qPCR and Western blot results also showed that the transcription expressions and the protein dissociation of caspase-9, caspase-3, caspase-7, caspase-6, and poly(ADP-ribose) polymerase (PARP), which were increased by S. aureus infection, were inhibited by Se supplementation. All of the results displayed that the protection conferred by MSC was stronger than MSA. The present study indicated the Se supplementation might be a potential prevention and control measure for S. aureus-induced endometritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, et al. (2010) Acute selenium toxicity associated with a dietary supplement. Arch Int Med 170:256–261

    Article  Google Scholar 

  2. Vinceti M, Dennert G, Crespi CM, Zwahlen M, Brinkman M, Zeegers MP, et al. (2014) Selenium for preventing cancer. Cochrane Database of Syst Rev 3:CD005195

    Google Scholar 

  3. Zhang X, Liu C, Guo J, Song Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. Eur J Clin Nutri 2015.

  4. Harthill M (2009) Geochemical availability of dietary Se possible etiological determinant of viral infectious diseases (VIDs). Geochim Cosmochim Ac 73:A498

    Google Scholar 

  5. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41:443–447

    Article  CAS  PubMed  Google Scholar 

  6. Biller-Takahashi JD, Takahashi LS, Mingatto FE, Urbinati EC (2015) The immune system is limited by oxidative stress: dietary selenium promotes optimal antioxidative status and greatest immune defense in pacu Piaractus mesopotamicus. Fish Shellfish Immunol 47:360–367

    Article  CAS  PubMed  Google Scholar 

  7. Morgia G, Cimino S, Favilla V, Russo GI, Squadrito F, Mucciardi G, et al. (2013) Effects of Serenoa repens, selenium and lycopene (Profluss(R)) on chronic inflammation associated with benign prostatic hyperplasia: results of “FLOG” (Flogosis and Profluss in Prostatic and Genital Disease), a multicentre Italian study. Int Braz J Urol Off J Braz Soc Urol 39:214–221

    Google Scholar 

  8. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kipp A, Banning A, van Schothorst EM, Meplan C, Schomburg L, Evelo C, et al. (2009) Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Mol Nutri Food Res 53:1561–1572

    Article  CAS  Google Scholar 

  10. Dawczynski J, Winnefeld K, Strobel J (2006) Selenium and zinc in patients with acute and chronic uveitis. Biol Trace Element Res 113:131–137

    Article  CAS  Google Scholar 

  11. Nido SA, Shituleni SA, Mengistu BM, Liu Y, Khan AZ, Gan F, et al. (2015) Effects of selenium-enriched probiotics on lipid metabolism. Histopathological lesions, and related gene expression in mice fed a high-fat diet. Biological trace element research. doi:10.1007/s12011-015-0552-8

  12. Musik I, Koziol-Montewka M, Tos-Luty S, Donica H, Pasternak K, Wawrzycki S (2002) Comparison of selenium distribution in mice organs after the supplementation with inorganic and organic selenium compound selenosemicarbazide. Ann Universitatis Mariae Curie-Sklodowska Sectio D Med 57:15–22

    Google Scholar 

  13. Sheldon IM, Bromfield JJ (2011) Innate immunity in the human endometrium and ovary. Am J Reprod Immunol 66(Suppl 1):63–71

    Article  PubMed  Google Scholar 

  14. Turner ML, Healey GD, Sheldon IM (2012) Immunity and inflammation in the uterus. Reproduction in domestic animals. Zuchthygiene 47(Suppl 4):402–409

    Article  PubMed  Google Scholar 

  15. Sheldon IM, Williams EJ, Miller AN, Nash DM, Herath S (2008) Uterine diseases in cattle after parturition. Vet J 176:115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krehl S, Loewinger M, Florian S, Kipp AP, Banning A, Wessjohann LA, et al. (2012) Glutathione peroxidase-2 and selenium decreased inflammation and tumors in a mouse model of inflammation-associated carcinogenesis whereas sulforaphane effects differed with selenium supply. Carcinogenesis 33:620–628

    Article  CAS  PubMed  Google Scholar 

  17. Jadon RS, Dhaliwal GS, Jand SK (2005) Prevalence of aerobic and anaerobic uterine bacteria during peripartum period in normal and dystocia-affected buffaloes. Anim Reprod Sci 88:215–224

    Article  CAS  PubMed  Google Scholar 

  18. Veni JK, Bhat G, Shalini SM, Kumar P, Chakrapani M, Baliga S (2015) Community-acquired methicillin resistant Staphylococcus aureus bacteremia: case series. Kathmandu Univ Med J 13:77–79

    Article  CAS  Google Scholar 

  19. Josse J, Velard F, Gangloff SC (2015) Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol 5:85

    Article  PubMed  PubMed Central  Google Scholar 

  20. Divakaruni N, Hurley SD, Bjurlin MA, Gage M, Hollowell CM (2013) Genitourinary skin and soft tissue infections: a prospective contemporary evaluation of causative pathogens. J Urol 190:539–543

    Article  PubMed  Google Scholar 

  21. Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176:70–76

    Article  CAS  PubMed  Google Scholar 

  22. Zhang ZC, Gao XJ, Cao YG, Jiang HC, Wang TC, Song XJ, et al. (2015) Selenium deficiency facilitates inflammation through the regulation of TLR4 and TLR4-related signaling pathways in the mice uterus. Inflammation 38:1347–1356

    Article  CAS  PubMed  Google Scholar 

  23. Sheldon IM (2004) The postpartum uterus. Vet Clin North Am Food Anim Pract 20:569–591

    Article  PubMed  Google Scholar 

  24. Suzuki KT, Tsuji Y, Ohta Y, Suzuki N (2008) Preferential organ distribution of methylselenol source Se-methylselenocysteine relative to methylseleninic acid. Toxicology Appl Pharmacol 227:76–83

    Article  CAS  Google Scholar 

  25. Guo M, Gao X, Zhang N, Qiu C, Li C, Deng G. Effects of Se on the diversity of SelT synthesis and distribution in different smooth muscle tissues in rats. Biol Trace Element Res 2015.

  26. Hasunuma R, Ogawa T, Kawanishi Y (1982) Fluorometric determination of selenium in nanogram amounts in biological materials using 2,3-diaminonaphthalene. Anal Biochem 126:242–245

    Article  CAS  PubMed  Google Scholar 

  27. Kohrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  CAS  PubMed  Google Scholar 

  28. Chan DS, Wong M (1997) Multidisciplinary handbook on pediatric nutritional support. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm 54:1355

    CAS  Google Scholar 

  29. Hemingway RG (2003) The influences of dietary intakes and supplementation with selenium and vitamin E on reproduction diseases and reproductive efficiency in cattle and sheep. Vet Res Commun 27:159–174

    Article  CAS  PubMed  Google Scholar 

  30. Korea CG, Balsamo G, Pezzicoli A, Merakou C, Tavarini S, Bagnoli F, et al. (2014) Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect Immun 82:4144–4153

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66:336–342

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo MY, Lv TT, Liu FN, Yan HY, Wei T, Cai H, et al. (2013) Dietary selenium influences calcium release and activation of MLCK in uterine smooth muscle of rats. Biol Trace Element Res 154:127–133

    Article  CAS  Google Scholar 

  33. Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392–5396

    Article  CAS  PubMed  Google Scholar 

  34. Kang SS, Noh SY, Park OJ, Yun CH, Han SH (2015) Staphylococcus aureus induces IL-8 expression through its lipoproteins in the human intestinal epithelial cell, Caco-2. Cytokine 75:174–180

    Article  CAS  PubMed  Google Scholar 

  35. Fitzgerald KA, Chen ZJ (2006) Sorting out toll signals. Cell 125:834–836

    Article  CAS  PubMed  Google Scholar 

  36. Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J (2010) The role of toll-like receptors in renal diseases. Nature Rev Nephrol 6:224–235

    Article  CAS  Google Scholar 

  37. Tran PA, O'Brien-Simpson N, Reynolds EC, Pantarat N, Biswas DP, O’Connor AJ (2016) Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S aureus and E coli. Nanotechnology 27:045101

    Article  PubMed  Google Scholar 

  38. Sonkusre P, Singh CS (2015) Biogenic selenium nanoparticles inhibit Staphylococcus aureus adherence on different surfaces. Colloids Surf B Biointerfaces 136:1051–1057

    Article  CAS  PubMed  Google Scholar 

  39. Pandey AK, Sodhi A (2011) Recombinant YopJ induces apoptotic cell death in macrophages through TLR2. Mol Immunol 48:392–398

    Article  CAS  PubMed  Google Scholar 

  40. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074

    Article  CAS  PubMed  Google Scholar 

  41. Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19:3325–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fundamental Research Funds for the Central Universities (No. 2662014BQ024 and 2662015JC006 ), National Natural Science Foundation of China (No. 31502130 and 31101864), and undergraduate special science and technology innovation of Huazhong agricultural university (NO. 2015BC009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyao Guo.

Additional information

Yuzhu Liu and Changwei Qiu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qiu, C., Li, W. et al. Selenium Plays a Protective Role in Staphylococcus aureus-Induced Endometritis in the Uterine Tissue of Rats. Biol Trace Elem Res 173, 345–353 (2016). https://doi.org/10.1007/s12011-016-0659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0659-6

Keywords

Navigation