Skip to main content
Log in

Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals’ salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements’ concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  CAS  PubMed  Google Scholar 

  2. Zaidman BZ, Yassin M, Mahajana J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutic. Appl Microbiol Biotechnol 67:4534–4568

    Article  Google Scholar 

  3. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2011) Indole compounds in fruiting bodies of some edible Basidiomycota species. Food Chem 125:1306–1308

    Article  Google Scholar 

  4. Koyalamudi SR, Jeong SC, Song CH, Cho KY, Pang G (2008) Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. J Agr Food Chem 57:3351–3355

    Article  Google Scholar 

  5. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2012) An antioxidant in fruiting bodies and in mycelia from in vitro cultures of Calocera viscosa (Basidiomycota)—preliminary result. Acta Pol Pharm 69:135–138

    PubMed  Google Scholar 

  6. Krajewski P, Chudzik A, Pokrzynicka M, Kalinka J, Kwiatkowska M (2009) Macro micro and trace elements concentrations in mothers and new borns hair and its impact pregnancy outcome. APM 15:67–71

    Google Scholar 

  7. Isildak Ö, Turkekul I, Elmastas M, Aboul-Enein HY (2007) Bioaccumulation of heavy metals in some wild-grown edible mushrooms. Anal Lett 40:1099–1116

    Article  CAS  Google Scholar 

  8. Bielawski L, Falandysz J (2008) Wybrane pierwiastki w owocnikach koźlarza babki z okolic miasta Starachowice. Bromat Chem Toksykol – XLI 1:47–52

  9. Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira ICFR (2007) Fatty acid and sugar compositions and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem 105:140–145

    Article  CAS  Google Scholar 

  10. Dembitsky VM, Terent’ev AO, Levitsky DO (2010) Amino and fatty acids of wild edible mushrooms of the genus Boletus. Rec Nat Prod 4:218–223

    CAS  Google Scholar 

  11. Ey J, Schömi E, Taubert D (2007) Dietary sources and antioxidant effects of ergothioneine. J Agr Food Chem 55:6466–6474

    Article  CAS  Google Scholar 

  12. Sułkowska-Ziaja K, Muszyńska B, Końska G (2005) Biologically active compounds of fungal origin displaying antitumor activity. Acta Pol Pharm 62:153–160

    PubMed  Google Scholar 

  13. Markowa N (2009) Skin cells and tissue are capable of using L-ergothioneine as an integral component of their antioxidant defense system. Free Radic Biol Med 46:1168–1176

    Article  Google Scholar 

  14. Roberts J (2008) Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. Food Chem 56:4541–4544

    Article  CAS  Google Scholar 

  15. Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR (2008) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747

    Article  CAS  PubMed  Google Scholar 

  16. Grube B (2001) White button mushroom phytochemicals inhibit aromatase activity and cancer cell proliferation. J Nutr 131:3288–3293

    CAS  PubMed  Google Scholar 

  17. Guerrera MP, Volpe SL, Mao JJ (2009) Therapeutic uses of magnesium. Am Fam Physician 80:157–162

    PubMed  Google Scholar 

  18. Ouzuni PK, Veltsistas PG, Paleologos EK, Riganakos KA (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compost Anal 20:480–486

    Article  Google Scholar 

  19. Isildak Ö, Turkekul I, Elmastas M, Aboul-Enein HY (2007) Bioaccumulation of heavy metals in some wild-grown edible mushrooms. Anal Lett 40:1099–1116

    Article  CAS  Google Scholar 

  20. Svoboda L, Chrastny´ V (2008) Levels of eight trace elements in edible mushrooms from a rural area. Food Addit Contam 25:51–58

    Article  CAS  Google Scholar 

  21. Demirbas A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457

    Article  CAS  Google Scholar 

  22. Turkekul I, Elmastas M, Tuzen M (2004) Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem 84:389–392

    Article  CAS  Google Scholar 

  23. Benbrahim M, Denaix L, Thomas AL, Balet J, Carnus JM (2006) Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ Pollut 144:847–854

    Article  CAS  PubMed  Google Scholar 

  24. Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:l-15

  25. Oddoux L (ed) (1957) Recherches sur les mycéliums secondaires des Homobasidiés en culture pure. Imprimerie de Trevoux, Lyon

    Google Scholar 

  26. Elmastas M, Isildak O, Turkekul I, Temur N (2007) Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compost Anal 20:337–345

    Article  CAS  Google Scholar 

  27. Foulongne-Orio M, Murat C, Castanera R, Ramírez L, Sonnenberg ADW (2013) Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 55:6–21

    Article  Google Scholar 

  28. Glamočlija J, Stojković D, Nikolić M, Ćirić A, Reis FS, Barros L, Ferreira ICFR (2015) A comparative study on edible mushrooms as functional foods. Food Funct 26:1900–1910

    Article  Google Scholar 

  29. Marmeisse R, Jargeat P, Wagner F, Gay G, Debaud JC (1998) Isolation and characterization of nitrate reductase deficient mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum. New Phytol 140:311–318

    Article  CAS  Google Scholar 

  30. Sułkowska-Ziaja K, Ekiert H, Muszyńska B (2012) Chemical analysis and cytotoxic activity of the polysaccharide fractions from fruiting bodies and mycelium from in vitro cultures of Sarcodon imbricatus. Acta Mycol 47:49–56

    Article  Google Scholar 

  31. Reczyński W, Muszyńska B, Opoka W, Smalec A, Sułkowska-Ziaja K (2013) Comparative study of metals accumulation in cultured in vitro mycelium and natural grown fruiting bodies of Boletus badius and Cantharellus cibarius. Biol Trace Elem Res 153:355–362

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2013) Analysis of indole compounds in methanolic extracts from the fruiting bodies of Cantharellus cibarius (the Chanterelle) and and from the mycelium of this species cultured in vitro. Food Sci Technol 50:1233–1237

    Article  Google Scholar 

  33. Muller I (1998) Digestion and preparation of organic and biological microsamples for ultratrace elemental analysis. J Anal Atom Spectrom 19:45–47

    CAS  Google Scholar 

  34. David DJ (1978) Analysis of soils, plants, fertilizers and other agricultural materials. Anal Atom Spect 1:225

    CAS  Google Scholar 

  35. Fricke FL, Robbins WR, Caruso JA (1979) Trace element analysis of food and beverages by AAS. Prog Anal Atom Spect 2:185–286

    CAS  Google Scholar 

  36. Łojewski M, Muszyńska B, Smalec A, Reczyński W, Sułkowska-Ziaja K, Opoka W (2014) Development of optimal medium content for bioelements accumulation in Bacopa monnieri (L.) in vitro culture. Appl Biochem Biotech 174:1535–1547

    Article  Google Scholar 

  37. Muszyńska B, Krakowska A, Sułkowska-Ziaja K, Opoka W, Reczyński W, Baś B (2015) In vitro cultures and fruiting bodies of culinary-medicinal Agaricus bisporus (white button mushroom) as a source of selected biologically-active elements. Food Sci Technol 52:7337–7344

    Article  Google Scholar 

  38. Massart DL, Vandeginste MBG, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics: part B. Elsevier, Amsterdam

    Google Scholar 

  39. Mazerski J (2000) Base of chemometric. Politechnika Gdańska, Gdańsk(in polish)

    Google Scholar 

  40. Gan F, Ruan G, Mo J (2006) Chemometr. Intell. Lab. Syst. 82:59

    Article  CAS  Google Scholar 

  41. Otto M (1999) Chemometrics-statistics computer application in analytical chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  42. Kramer R (1996) Chemometrics techniques for quantitative analysis. Marcel Dekker, Inc., Basel, New York

    Google Scholar 

  43. Brereton RG (2003) Chemometrics data analysis for the laboratory and chemical plant. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Muszyńska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krakowska, A., Reczyński, W. & Muszyńska, B. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals. Biol Trace Elem Res 173, 231–240 (2016). https://doi.org/10.1007/s12011-016-0638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0638-y

Keywords

Navigation