Skip to main content

Advertisement

Log in

Iron Oxide Nanoparticles Induce Oxidative Stress, DNA Damage, and Caspase Activation in the Human Breast Cancer Cell Line

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Broad applications of iron oxide nanoparticles require an improved understanding of their potential effects on human health. In the present study, we explored the underlying mechanism through which iron oxide nanoparticles induce toxicity in human breast cancer cells (MCF-7). MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) and lactate dehydrogenase assays were used to examine mechanisms of cytotoxicity. Concentration- and time-dependent cytotoxicity was observed in MCF-7 cells. Iron oxide nanoparticles were found to induce oxidative stress evidenced by the elevation of reactive oxygen species generation, lipid peroxidation, and depletion of superoxide dismutase, glutathione, and catalase activities in MCF-7 cells. Nuclear staining was performed using 4′, 6-diamidino-2-phenylindole (DAPI), and cells were analyzed with a fluorescence microscope. Iron oxide nanoparticles (60 μg/ml) induced substantial apoptosis that was identified by morphology, condensation, and fragmentation of the nuclei of the MCF-7 cells. It was also observed that the iron oxide NPs induced caspase-3 activity. DNA strand breakage was detected by comet assay, and it occurred in a concentration- and time-dependent manner. Thus, the data indicate that iron oxide nanoparticles induced cytotoxicity and genotoxicity in MCF-7 cells via oxidative stress. This study warrants more careful assessment of iron oxide nanoparticles before their industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alghamdi IG, Hussain II, Alghamdi MS, El-Sheemy MA (2013) The incidence rate of female breast cancer in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer Registry 2001-2008. Breast Cancer Targets Ther 5:103–109

    Article  Google Scholar 

  2. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5(2):316–327

    Article  CAS  PubMed  Google Scholar 

  3. Lee KJ, An JH, Shin JS, Kim DH (2012) Synthesis and characterization of bicalutamide-loaded magnetic nanoparticles as anti-tumor drug carriers. J Nanosci Nanotechnol 12(2):1611–1615

    CAS  PubMed  Google Scholar 

  4. Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, Jeon YS, Shim CK, Kim W, Kim J, Lee J, Lee YM, Kim JH, Kim WH, Hong SS (2010) Multi-functional doxorubicin-loaded super paramagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31(18):4995–5006

    Article  CAS  PubMed  Google Scholar 

  5. Jia Y, Yuan M, Yuan H, Huang X, Sui X, Cui X, Tang F, Peng J, Chen J, Lu S, Xu W, Zhang L, Guo Q (2012) Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int J Nanomedicine 63:1697–1708

    Google Scholar 

  6. Li Y-F, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980

    Article  CAS  PubMed  Google Scholar 

  7. Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nano genotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  PubMed  Google Scholar 

  8. Skocaj M, Filipic M, Petkovic J, Novak S (2011) Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45:227–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang Y, Aker WG, Hwang HM, Yedjou CGYH et al (2011) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409:4753–4762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. van Maanen JM, Borm PJ, Knaapen A, van Herwijnen M, Schilderman PA, Smith KR, Aust AE, Tomatis M, Fubini B (1999) In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal Toxicol 11:1123–1141

    Article  PubMed  Google Scholar 

  11. Borm PJ, Schins RP, Albrecht C (2004) Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110:3–14

    Article  CAS  PubMed  Google Scholar 

  12. Naziroglu M, Simsek M, Kutlu M (2004) Moderate exercise with dietary vitamin C and E combination protects streptozotocin induced oxidative damage to the blood and improves fetal outcomes in pregnant rats. Clin Chem Lab Med 42:511–517

    Article  CAS  PubMed  Google Scholar 

  13. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  14. Wroblewski F, LaDue JS (1955) Lactate dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  17. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  18. Ellman G (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  19. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  20. Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA (2013) Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 32(4):296–307

    Article  PubMed  Google Scholar 

  21. Ali D, Ray RS, Hans RK (2010) UVA-induced cyototoxicity and DNA damaging potential of benz (e) acephenanthrylene in human skin cell line. Toxicol Lett 199(2):193–200

    Article  CAS  PubMed  Google Scholar 

  22. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235

    Article  CAS  PubMed  Google Scholar 

  23. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Asha Rani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  25. Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN (2011) Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 205:105–115

    Article  CAS  PubMed  Google Scholar 

  26. Naziroglu M, Uguz AC, Kocak A, Bal R (2009) Acetaminophen at different doses protects brain microsomal Ca2+-ATPase and the antioxidant redox system in rats. J. Membr Biol 231:57–64

    Article  CAS  Google Scholar 

  27. Brooks C, Wei Q, Feng L, Dong G, Tao Y, Mei L, Xie ZJ, Dong Z (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Nat Acad Sci USA 104:11649–11654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2:882–890

    Article  CAS  Google Scholar 

  29. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  CAS  PubMed  Google Scholar 

  30. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  31. Alarifi S, Ali D, Alakhtani S, Al-Suhaibani ES, Al-Qahtani AA (2014) Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles. Biol Trace Elem Res 157:84–93

    Google Scholar 

  32. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  33. Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, BEAS-2B. Toxicol Lett 187:77–83

    Article  CAS  PubMed  Google Scholar 

  34. Park EJ, Park K (2007) Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride. Toxicol in Vitro 21:789–794

    Article  CAS  PubMed  Google Scholar 

  35. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62

    Article  CAS  PubMed  Google Scholar 

  37. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications and limitations. Mol Biotechnol 26(3):249–261

    Article  CAS  PubMed  Google Scholar 

  38. Martinez GR, Loureiro AP, Marques SA, Miyamoto S, Yamaguchi LF, Onuki J, Almeida EA, Garcia CC, Barbosa LF, Medeiros MH, Di Mascio P (2003) Oxidative and alkylating damage in DNA. Mutat Res 544:115–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research through research group Project No. RGP-VPP-180.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoud Ali.

Additional information

Daoud Ali and Saud Alarifi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarifi, S., Ali, D., Alkahtani, S. et al. Iron Oxide Nanoparticles Induce Oxidative Stress, DNA Damage, and Caspase Activation in the Human Breast Cancer Cell Line. Biol Trace Elem Res 159, 416–424 (2014). https://doi.org/10.1007/s12011-014-9972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9972-0

Keywords

Navigation