Skip to main content
Log in

Effect of TiO2 Nanoparticles on the Reproduction of Silkworm

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Silkworm (Bombyx mori) is an important economic insect and the model insect of Lepidoptera. Because of its high fecundity and short reproduction cycle, it has been widely used in reproduction and development research. The high concentrations of titanium dioxide nanoparticles (TiO2 NPs) show reproductive toxicity, while low concentrations of TiO2 NPs have been used as feed additive and demonstrated significant biological activities. However, whether the low concentrations of TiO2 NPs affect the reproduction of B. mori has not been reported. In this study, the growth and development of gonad of B. mori fed with a low concentration of TiO2 NPs (5 mg/L) were investigated by assessing egg production and expression of reproduction-related genes. The results showed that the low concentration of TiO2 NPs resulted in faster development of the ovaries and testes and more gamete differentiation and formation, with an average increase of 51 eggs per insect and 0.34 × 10−4 g per egg after the feeding. The expressions of several reproduction-related genes were upregulated, such as the yolk-development-related genes Ovo-781 and vitellogenin (Vg) were increased by 5.33- and 6.77-folds, respectively. This study shows that TiO2 NPs feeding at low concentration can enhance the reproduction of B. mori, and these results are useful in developing new methods to improve fecundity in B. mori and providing new clues for its broad biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, Touhara K (2009) Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol 19:881–890

    Article  CAS  PubMed  Google Scholar 

  2. Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    Article  CAS  PubMed  Google Scholar 

  3. International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Molec 38:1036–1045

    Article  Google Scholar 

  4. Cheng D, Yang J, Zhao Y (2004) Antibacterial materials of silver nanoparticles application in medical appliances and appliances for daily use. Chin Med Equip J 4:26–32

    Google Scholar 

  5. Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Summerhayes IC (2007) In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect 8:397–404

    Article  Google Scholar 

  6. YeonáLee H, KunáPark H, MiáLee Y, BumáPark S (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Google Scholar 

  7. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechno 7:1893–1897

    Article  CAS  Google Scholar 

  8. Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Tech 22:595–603

    Article  CAS  Google Scholar 

  9. Liang SS, Makamba H, Huang SY, Chen SH (2006) Nano-titanium dioxide composites for the enrichment of phosphopeptides. J Chromatogr A 1116:38–45

    Article  CAS  PubMed  Google Scholar 

  10. Hong FS, Yang F, Liu C, Gao Q, Wan ZG, Gu FG, Wu C, Ma ZN, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260

    Article  CAS  PubMed  Google Scholar 

  11. Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  PubMed  Google Scholar 

  12. Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85:34–42

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Ni M, Li FC, Xu KZ, Wang BB, Hong FS, Li B (2014) Effects of feeding silkworm with nanoparticulate anatase TiO2 (TiO2 NPs) on its feed efficiency. Biol Trace Elem Res 159:224–232

    Article  CAS  PubMed  Google Scholar 

  14. Fan JG, Tao WZ (1988) Differences of the protein distribution rate of different silkworm varieties and correlate measurement. J Anhui Agr Sci 4:38 http://xuewen.cnki.net/CJFDAHNY198804019.html

  15. Yang P, Lu C, Hua NP, Du YK (2002) Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett 57:794–801

    Article  CAS  Google Scholar 

  16. Hu RP, Zheng L, Zhang T, Gao GD, Cui YL, Cheng Z, Cheng J, Hong MM, Tang M, Hong FS (2011) Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191:32–40

    Article  CAS  PubMed  Google Scholar 

  17. Oliver B, Perrimon N, Mahowald AP (1987) The ovo locus is required for sex-specific germ line maintenance in Drosophila. Genes Dev 1:913–923

    Article  CAS  PubMed  Google Scholar 

  18. Pauli D, Oliver B, Mahowald AP (1993) The role of the ovarian tumor locus in Drosophila melanogaster germ line sex determination. Development 119:123–134

    CAS  PubMed  Google Scholar 

  19. Ayyar S, Jiang J, Collu A, White-Cooper H, White RA (2003) Drosophila TGIF is essential for developmentally regulated transcription in spermatogenesis. Development 130:2841–2852

    Article  CAS  PubMed  Google Scholar 

  20. Fisher J, Egerton T (2001) Kirk-Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  21. Kaida T, Kobayashi K, Adachi M, Suzuki F (2004) Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 55:219–220

    PubMed  Google Scholar 

  22. Esterkin CR, Negro AC, Alfano OM, Cassano AE (2005) Air pollution remediation in a fixed bed photocatalytic reactor coated with TiO2. AIChE J 51:2298–2310

    Article  CAS  Google Scholar 

  23. Choi H, Stathatos E, Dionysiou DD (2006) Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B-Environ 63:60–67

    Article  CAS  Google Scholar 

  24. Li FC, Gu ZY, Wang BB, Xie Y, Ma L, Xu KZ, Ni M, Zhang H, Shen WD, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol 40:913–922

    Article  CAS  PubMed  Google Scholar 

  25. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357

    Article  CAS  PubMed  Google Scholar 

  26. Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Persp 115:397–402

    Article  CAS  Google Scholar 

  27. Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, Jia G, Gao YX, Li B, Sun J, Li YF, Jiao F, Zhao YL, Chai ZF (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol lett 168:176–185

    Article  CAS  PubMed  Google Scholar 

  28. Philbrook NA, Winn LM, Afrooz ARMN, Saleh NB, Walker VK (2011) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharm 257:429–436

    Article  CAS  Google Scholar 

  29. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Van Ravenzwaay B (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82:151–157

    Article  CAS  PubMed  Google Scholar 

  30. Umbreit T, Weaver JL, Miller TJ, Zhang J, Shah R, Stratmeyer ME, Tomazic-Jezic V (2007) Toxicology of titanium dioxide (TiO2) nanoparticles: 1. Characterization and tissue distribution in subcutaneously and intravenously injected mice. Toxicologist 96:287

    Google Scholar 

  31. Donos N, Retzepi M, Wall I, Hamlet S, Ivanovski S (2011) In vivo gene expression profile of guided bone regeneration associated with a microrough titanium surface. Clin Oral Implan Res 22:390–398

    Article  CAS  Google Scholar 

  32. Guedes JC, Park JH, Lakhkar NJ, Kim HW, Knowles JC, Wall IB (2013) TiO2-doped phosphate glass microcarriers: a stable bioactive substrate for expansion of adherent mammalian cells. J Biomater Appl 28:3–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Li B, Hu RP, Cheng Z, Cheng J, Xie Y, Gui SX, Sun QQ, Sang XZ, Gong XL, Cui YL, Shen WD, Hong FS (2012) Titanium dioxide nanoparticles relieve biochemical dysfunctions of fifth-instar larvae of silkworms following exposure to phoxim insecticide. Chemosphere 89:609–614

    Article  CAS  PubMed  Google Scholar 

  34. Su JJ, Li B, Cheng S, Zhu Z, Sang XZ, Gui SX, Xie Y, Sun QQ, Cheng Z, Cheng J, Hu RP, Shen WD, Xia QY, Zhao P, Hong FS (2013) Phoxim-induced damages of Bombyx mori larval midgut and titanium dioxide nanoparticles protective role under phoxim-induced toxicity. Environ Toxicol. doi:10.1002/tox.21866

    PubMed  Google Scholar 

  35. Richard DS, Watkins NL, Serafin RB, Gilbert LI (1998) Ecdysteroids regulate yolk protein uptake by Drosophila melanogaster oocytes. J Insect Physiol 44:637–644

    Article  CAS  PubMed  Google Scholar 

  36. Matozzo V, Marin MG (2005) Can 4-nonylphenol induce vitellogenin-like proteins in the clam Tapes philippinarum? Environ Res 97:43–49

    Article  CAS  PubMed  Google Scholar 

  37. Yuan HX, Xu X, Sima YH, Xu SQ (2013) Reproductive toxicity effects of 4-nonylphenol with known endocrine disrupting effects and induction of vitellogenin gene expression in silkworm, Bombyx mori. Chemosphere 93:263–268

    Article  CAS  PubMed  Google Scholar 

  38. Oliver B, Kim YJ, Baker BS (1993) Sex-lethal, master and slave: a hierarchy of germ-line sex determination in Drosophila. Development 119:897–908

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA102507), the State Key Laboratory of Silkworm Genome Biology, the Transformation Project of Agriculture Scientific and Technological Achievements (2013GB2C100180), the projects sponsored by the National Cocoons Silk Development Funds in 2014, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Doctoral Fund of Ministry of Education of the People’s Republic of China (20113201110008), the China Agriculture Research System (CARS-22-ZJ0305), and the Science & Technology support Program of Suzhou (ZXS2012005, SYN201406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Additional information

Min Ni and Fanchi Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, M., Li, F., Wang, B. et al. Effect of TiO2 Nanoparticles on the Reproduction of Silkworm. Biol Trace Elem Res 164, 106–113 (2015). https://doi.org/10.1007/s12011-014-0195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0195-1

Keywords

Navigation