Skip to main content

Advertisement

Log in

Moderate Zinc Supplementation During Prolonged Steroid Therapy Exacerbates Bone Loss in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was conducted to understand the influence of zinc on bone mineral metabolism in prednisolone-treated rats. Disturbance in bone mineral metabolism was induced in rats by subjecting them to prednisolone treatment for a period of 8 weeks. Female rats aged 6–8 weeks weighing 150 to 200 g were divided into four treatment groups, viz., normal control, prednisolone-treated (40 mg/kg body weight orally, thrice a week), zinc-treated (227 mg/L in drinking water, daily), and combined prednisolone + zinc-treated groups. Parameters such as changes in mineral levels in the bone and serum, bone mineral density (BMD), bone mineral content (BMC), and bone 99m-technetium-labeled methylene diphosphonate (99mTc-MDP) uptake were studied in various treatment groups. Prednisolone treatment caused an appreciable decrease in calcium levels both in the bone and serum and also in bone dry weight, BMC, and BMD in rats. Prednisolone-treated rats when supplemented with zinc showed further reduction in calcium levels, bone dry weight, BMD, and BMC. The study therefore revealed that moderate intake of zinc as a nutritional supplement during steroid therapy could enhance calcium deficiency in the body and accelerate bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Report of a workshop by the British Association for Paediatric Nephrology and Research Unit, Royal College of Physicians (1994) Consensus statement on management and audit potential for steroid responsive nephrotic syndrome. Arch Dis Child 70:151–157

    Article  Google Scholar 

  2. Alan R, Gaby MD (2006) Natural remedies for scleroderma. Altern Med Rev 11:188–195

    Google Scholar 

  3. Tipu MK, Saleem U, Hussain K et al (2012) The role of zinc on anti-Newcastle disease virus specific antibody response and agranulocytes count in rabbits treated with methotrexate and prednisolone. Pak J Pharm Sci 25:845–849

    CAS  PubMed  Google Scholar 

  4. Jacox A, Carr DB, Payne R (1994) New clinical-practice guidelines for the management of pain in patients with cancer. N Engl J Med 330:651–655

    Article  CAS  PubMed  Google Scholar 

  5. Adachi JD (2001) Corticosteroid-induced osteoporosis. Int J Fertil Womens Med 46:190–205

    CAS  PubMed  Google Scholar 

  6. Canalis E, Giustina A (2001) Glucocorticoid-induced osteoporosis: summary of a workshop. J Clin Endocrinol Metab 86:5681–5685

    Article  CAS  PubMed  Google Scholar 

  7. Reid IR (1997) Glucocorticoid osteoporosis—mechanisms and management. European J Endocrinol 137:209–217

    Article  CAS  Google Scholar 

  8. Bigi A, Foresti E, Gandolfi M et al (1995) Inhibiting effect of zinc on hydroxyapatite crystallization. J Inorg Biochem 58:49–58

    Article  CAS  Google Scholar 

  9. Spencer H, Rubio N, Kramer L et al (1987) Effect of zinc supplements on the intestinal absorption of calcium. J Am Coll Nutr 6:47–51

    Article  CAS  PubMed  Google Scholar 

  10. Murray EJ, Langhaus B, Messer HH (1981) The effects of zinc and calcium deficiencies on the rate of bone resorption in the rat. Nutr Res 1:107–115

    Article  CAS  Google Scholar 

  11. Song MK, Adham NF, Ament ME (1986) Levels and distribution of zinc, copper, magnesium, and calcium in rats fed different levels of dietary zinc. Biol Trace Element Res 11:75–88

    Article  CAS  Google Scholar 

  12. Murray EJ, Langhaus B, Messer HH (1981) The effects of zinc and calcium deficiencies on the rate of bone resorption in the rat. Nutr Res 1:107–115

    Article  CAS  Google Scholar 

  13. Adham NF, Song MK (1980) Effect of calcium and copper on zinc absorption in the rat. Nutr Metab 24:281–290

    Article  CAS  PubMed  Google Scholar 

  14. Yamaguchi M, Hashizume M (1994) Effect of β-alanyl-L-histidinato zinc on protein components in osteoblastic MC3T3-E1 cells: increases in osteocalcin, insulin-like growth factor-I and transforming growth factor-β. Mol Cell Biochem 136:163–169

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi M, Segawa Y, Shimokawa N et al (1992) Inhibitory effect of β-alanyl-L-histidinato zinc on bone resorption in tissue culture. Pharmacology 45:292–300

    Article  CAS  PubMed  Google Scholar 

  16. Kishi S, Yamaguchi M (1994) Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 48:1225–1230

    Article  CAS  PubMed  Google Scholar 

  17. Bigi A, Foresti E, Gandolfi M et al (1995) Inhibiting effect of zinc on hydroxyapatite crystallization. J Inorg Biochem 58:49–58

    Article  CAS  Google Scholar 

  18. Soares JH, Sherman S, Sinha R et al (1987) Effect of cholecalciferol, 1,25(OH)2D3 on bone metabolism in the rat. Nutr Res 7:151–164

    Article  CAS  Google Scholar 

  19. Sadasivan V (1951) Studies on the biochemistry of zinc.1. Effect of feeding zinc on the liver and bones of rats. Biochem J 48:527

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Sadasivan V (1951) Studies on the biochemistry of zinc. 2. Effect of zinc on the metabolism of rats maintained on a stock diet. Biochem J 49:186

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Sadasivan V (1952) Studies on the biochemistry of zinc. 3. Further investigations on the influence of zinc on metabolism. Biochem J 52:452

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Thompson A, Hansard SL, Bell MC (1959) The influence of aluminum and zinc upon the absorption and retention of calcium and phosphorus in lambs. J Animal Sci 18:187

    CAS  Google Scholar 

  23. Yasui M, Ota K, Garruto RM (1991) Aluminum decreases the zinc concentration of soft tissues and bones of rats fed a low calcium-magnesium diet. Biol Trace Element Res 31:293–304

    Article  CAS  Google Scholar 

  24. Song MK, Adham NF, Ament ME (1986) Levels and distribution of zinc, copper, magnesium, and calcium in rats fed different levels of dietary zinc. Biol Trace Element Res 11:75–88

    Article  CAS  Google Scholar 

  25. Sandstead HH (1995) Is zinc deficiency a public health problem? Nutrition 11:87–92

    CAS  PubMed  Google Scholar 

  26. Prasad AS (1995) Zinc: an overview. Nutrition 11:93–99

    CAS  PubMed  Google Scholar 

  27. Bogden JD, Oleske JM, Lavenhar MA et al (1990) Effects of one year of supplementation with zinc and other micronutrients on cellular immunity in the elderly. J Am Coll Nutr 9:214–225

    Article  CAS  PubMed  Google Scholar 

  28. Bhardwaj P, Rai DV, Garg ML (2013) Zinc as a nutritional approach to bone loss prevention in an ovariectomized rat model. Menopause 20:1107–1226

    Article  Google Scholar 

  29. Dhawan D, Goel A (1994) Protective role of zinc on rat liver function in long-term toxicity induced by carbon tetrachloride. J Trace Elem Exp Med 7:1–9

    CAS  Google Scholar 

  30. Lurie AG, Malleson SR (1976) 99mTc-diphosphonate bone imaging and uptake in healing rat extraction sockets. J Nucl Med 17:688–692

    CAS  PubMed  Google Scholar 

  31. Nordin BEC, Marshal DH, Francis RM et al (1981) The effects of sex steroid and corticosteroid hormones on bone. J Steroid Biochem 15:171–174

    Article  CAS  PubMed  Google Scholar 

  32. Klein RG, Arnaud SB, Gallagher JC (1977) Intestinal calcium absorption in exogenous hypercortisonism. J Clin Invest 60:253–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hahn TJ, Halstead LR, Baran DT (1981) Effects of short term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocr Metab 52:111–115

    Article  CAS  PubMed  Google Scholar 

  34. Tohmon M, Fukase M, Kishihara M et al (1988) Effect of glucocorticoid administration on intestinal, renal and cerebellar calbindin-D28K in chicks. J Bone Miner Res 3:325–331

    Article  CAS  PubMed  Google Scholar 

  35. Dursun N et al (1994) Comparative effects of calcium deficiency and supplements on intestinal absorption of Zinc in rats. Jpn J Physiol 44:157–166

    Article  CAS  PubMed  Google Scholar 

  36. Spencer H, Rubio N, Kramer L, Norris C, Osis D (1987) Effect of zinc supplements on the intestinal absorption of calcium. J Am Coll Nutr 6(1):47–51

    Article  CAS  PubMed  Google Scholar 

  37. Zhou JR, Canar MM, Erdman JW (1993) Bone zinc is poorly released in young, growing rats fed marginally zinc-restricted diet. J Nutr 123:1383–1388

    CAS  PubMed  Google Scholar 

  38. Kenney MA, McCoy H (1997) Adding zinc reduces bone strength of rats fed a low-calcium diet. Biol Trace Elem Res 58:35–41

    Article  CAS  PubMed  Google Scholar 

  39. Jørgensen RJ, Hansen T, Jensen ML et al (2001) Effect of oral drenching with zinc oxide or synthetic zeolite A on total blood calcium in dairy cows. J Dairy Sci 84:609–613

    Article  PubMed  Google Scholar 

  40. Fontaine J, Nève J, Peretz A et al (1991) Effects of acute and chronic prednisolone treatment on serum zinc levels in rats with adjuvant arthritis. J Agents Actions 33:247–253

    Article  CAS  Google Scholar 

  41. Chen RW, Vasey EJ, Whanger PD (1977) Accumulation and depletion of zinc in rat liver and kidney metallothionens. J Nutr 107:805–813

    CAS  PubMed  Google Scholar 

  42. Yasui M, Ota K, Garruto RM (1991) Aluminum decreases the zinc concentration of soft tissues and bones of rats fed a low calcium-magnesium diet. Biol Trace Elements Res 31:293–304

    Article  CAS  Google Scholar 

  43. Hahn TJ, Halstead LR, Teitelbaum SL et al (1979) Altered mineral metabolism in glucocorticoid-induced osteopenia: effect of 25-hydroxy vitamin D administration. J Clin Invest 64:655–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Suzuki Y, Ichikawa Y, Saito E et al (1983) Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 32:151–156

    Article  CAS  PubMed  Google Scholar 

  45. Cosman F, Nieves J, Herbert J et al (1994) High-dose glucocorticoids in multiple sclerosis patients exert direct effects on the kidney and skeleton. J Bone Miner Res 9:1097–1105

    Article  CAS  PubMed  Google Scholar 

  46. Bellorin-Font E, Tamayo J, Martin KJ (1984) Uncoupling of the parathyroid hormone receptor-adenylate cyclase system of canine kidney during dietary phosphorus deprivation. Endocrinology 115:544–549

    Article  CAS  PubMed  Google Scholar 

  47. Knochel JP (1992) Hypophosphatemia and rhabdomyolysis. Am J Med 92:455–459

    Article  CAS  PubMed  Google Scholar 

  48. Salvatore A, Massimo UM, Ioannis I, (2012) Glucocorticoid-induced osteoporosis: chapter 7, available at http://www.endotext.org/adrenal/adrenal7/adrenalframe7.htm Accessed on October

  49. Saito N, Tabata N et al (2004) Bone mineral density, serum albumin and serum magnesium. J Am Coll of Nutr 23:701S–703S

    Article  CAS  Google Scholar 

  50. Simecková A, Neradilová M, Reisenauer R (1985) Effect of prednisolone on the rat bone calcium, phosphorus and magnesium concentration. Physiol Bohemoslov 34:155–60

    PubMed  Google Scholar 

  51. Hardwick L, Jones MR, Brautbar N et al (1991) Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J Nutr 121:13–23

    CAS  PubMed  Google Scholar 

  52. Toba Y, Kajita Y, Masuyama R, Takada Y, Suzuki K, Aoe S (2000) Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats. J Nutr 130:216–220

    CAS  PubMed  Google Scholar 

  53. Yokote Y, Kimura E, Kimura M et al (2008) Biomechanical analysis of combined treatment of high calcium and bisphosphonate in tibia of steroid-treated growing-phase rats. Dent Mater J 27:647–653

    Article  CAS  PubMed  Google Scholar 

  54. Ogoshi T, Hagino H, Fukata S et al (2008) Influence of glucocorticoid on bone in 3-, 6-, and 12-month-old rats as determined by bone mass and histomorphometry. Mod Rheumatol Japan Rheum Assoc 18:552–561

    Article  CAS  Google Scholar 

  55. Canalis E, Giustina A (2001) Glucocorticoid-induced osteoporosis: summary of a workshop. J Clin Endocrinol Metab 86:5681–5685

    Article  CAS  PubMed  Google Scholar 

  56. Weinstein RS, Jilka RL, Parfitt AM et al (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yao W, Cheng Z, Pham A et al (2008) Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis rheum 58:3485–3497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Moore AEB, Blake GM, Taylor KA et al (2012) Changes observed in radionuclide bone scans during and after teriparatide treatment for osteoporosis. Eur J Nucl Med Mol Imaging 39:326–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Nakashima H, Ochi H, Yasui N et al (1982) Uptake and localization of 99mTcMDP in mouse osteosarcoma. Eur J Nucl Med 7:531–535

    Article  CAS  PubMed  Google Scholar 

  60. Einhorn TA, Vigorita VJ, Aaron Z (l986) Localization of 99mTc MDP bone using microautoradiography. J Orthopaed Res 4:180–187

    Article  Google Scholar 

Download references

Acknowledgment

We thank the Panjab University, Chandigarh, India, animal house facility for providing animal care and also the technical staff of the Department of Radiology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India, for their analytical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dhawan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, R., Bansal, S.C., Khandelwal, N. et al. Moderate Zinc Supplementation During Prolonged Steroid Therapy Exacerbates Bone Loss in Rats. Biol Trace Elem Res 160, 383–391 (2014). https://doi.org/10.1007/s12011-014-0063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0063-z

Keywords

Navigation