Skip to main content

Advertisement

Log in

Angiopoietin 1 Relieves Osteolysis by Promoting Macrophage Mitophagy Through the TBK1-SQSTM1 Pathway to Inhibit AIM2 Inflammasome-Mediated Pyroptosis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Osteolysis resulting from wear particles and subsequent aseptic loosening is a leading cause of revision surgery of artificial joints. The underlying pathogenesis of particle-induced osteolysis (PPO) has remained largely uncertain. Addressing how to mitigate osteolysis caused by wear particles presents a significant challenge for orthopedic surgeons. This study aimed to explore the molecular mechanism by which Angiopoietin (Ang-1) inhibits osteoclast activation to alleviate osteolysis. RAW264.7 mouse macrophages were stimulated with LPS or RANKL to induce osteoclast formation. Additionally, titanium (Ti) particles (50 mg) were subperiosteally implanted around the cranial suture of mice to establish a calvarial osteolysis model. Ang-1, a member of the pro-angiogenic factor protein family and an important inflammatory regulator molecule, was utilized in this model. TRAP staining was utilized to detect osteoclast activation, while a western blot was conducted to identify key proteins associated with mitophagy and pyroptosis. Scanning electron microscopy was employed to observe the morphology and dimensions of Ti particles. Additionally, a combination of micro-CT, H&E, Masson’s trichrome, and immunohistochemical staining techniques were applied to analyze the calvarial samples. Results indicated that Ang-1 could inhibit LPS- or RANKL-induced osteoclastogenesis and alleviate Ti particle–induced calvarial osteolysis in mice. TBK-1, a key signaling molecule involved in initiating mitophagy, was found to be mechanistically enhanced by Ang-1 through promoting TBK-1 phosphorylation in macrophages. This process inhibited AIM2 inflammasome-mediated pyroptosis and impeded osteoclastogenesis. Overall, this research uncovers a novel mechanism by which Ang-1 can attenuate inflammatory osteolysis, potentially offering a new therapeutic approach for PPO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, (Jinzhong Ma), upon reasonable request.

References

  1. Zhang, J., Chen, J., Tay, D., Pang, H., Yeo, S., & Liow, M. (2023). Cost-effectiveness of robot-assisted total knee arthroplasty: A Markov decision analysis. The Journal of Arthroplasty, 38(8), 1434–1437. https://doi.org/10.1016/j.arth.2023.02.022

    Article  PubMed  Google Scholar 

  2. Sloan, M., Premkumar, A., & Sheth, N. (2018). Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. The Journal of Bone and Joint Surgery American, 100(17), 1455–60. https://doi.org/10.2106/jbjs.17.01617

    Article  Google Scholar 

  3. Sartori, M., Vincenzi, F., Ravani, A., Cepollaro, S., Martini, L., Varani, K., et al. (2017). RAW 264.7 co-cultured with ultra-high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: An in vitro model of periprosthetic osteolysis. Journal of Biomedical Materials Research Part A, 105(2), 510–20. https://doi.org/10.1002/jbm.a.35912

    Article  CAS  PubMed  Google Scholar 

  4. Gong, G., Wan, W., Liu, X., & Yin, J. (2023). Apelin-13, a regulator of autophagy, apoptosis and inflammation in multifaceted bone protection. International Immunopharmacology, 117, 109991. https://doi.org/10.1016/j.intimp.2023.109991

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, Y., Jia, T., Wooley, P., & Yang, S. (2013). Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta Orthopaedica Belgica, 79(1), 1–9

    PubMed  Google Scholar 

  6. Holt, G., Murnaghan, C., Reilly, J., & Meek, R. (2007). The biology of aseptic osteolysis. Clinical Orthopaedics and Related Research, 460, 240–252. https://doi.org/10.1097/BLO.0b013e31804b4147

    Article  CAS  PubMed  Google Scholar 

  7. Goodman, S., & Ma, T. (2010). Cellular chemotaxis induced by wear particles from joint replacements. Biomaterials, 31(19), 5045–5050. https://doi.org/10.1016/j.biomaterials.2010.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuller, K., Murphy, C., Kirstein, B., Fox, S., & Chambers, T. (2002). TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology, 143(3), 1108–1118. https://doi.org/10.1210/endo.143.3.8701

    Article  CAS  PubMed  Google Scholar 

  9. Yin, J., Yin, Z., Lai, P., Liu, X., & Ma, J. (2022). Pyroptosis in periprosthetic osteolysis. Biomolecules, 12(12), 1733. https://doi.org/10.3390/biom12121733

    Article  CAS  PubMed  Google Scholar 

  10. Yin, J., Gong, G., Wan, W., & Liu, X. (2022). Pyroptosis in spinal cord injury. Frontiers in Cellular Neuroscience, 16, 949939. https://doi.org/10.3389/fncel.2022.949939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, Y., Teng, Y., Zhang, C., Pan, Y., Zhang, Q., Zhu, X., et al. (2022). The ketone body β-hydroxybutyrate alleviates CoCrMo alloy particles induced osteolysis by regulating NLRP3 inflammasome and osteoclast differentiation. Journal of Nanobiotechnology., 20(1), 120. https://doi.org/10.1186/s12951-022-01320-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, S., Wen, Z., Li, S., Chen, Z., Li, C., Ouyang, Z., et al. (2022). LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis. Acta Biomaterialia, 142, 345–360. https://doi.org/10.1016/j.actbio.2022.02.007

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, J., Miller-Little, W., Li, X. (2021) Inflammasome-independent functions of AIM2. The Journal of Experimental Medicine, 218(5). https://doi.org/10.1084/jem.20210273

  14. Xu, X., Fan, H., Yang, Y., Yao, S., Yu, W., Guo, Z., et al. (2023). Virus-like particle-induced cGAS-STING activation and AIM2 inflammasome-mediated pyroptosis for robust cancer immunotherapy. Angewandte Chemie (International ed in English), 62(24), e202303010. https://doi.org/10.1002/anie.202303010

    Article  CAS  PubMed  Google Scholar 

  15. Pohl, C., & Dikic, I. (2019). Cellular quality control by the ubiquitin-proteasome system and autophagy. Science (New York, NY)., 366(6467), 818–822. https://doi.org/10.1126/science.aax3769

    Article  CAS  Google Scholar 

  16. Debnath, J., Gammoh, N., & Ryan, K. (2023). Autophagy and autophagy-related pathways in cancer. Nature Reviews Molecular Cell Biology, 24(8), 560–575. https://doi.org/10.1038/s41580-023-00585-z

    Article  CAS  PubMed  Google Scholar 

  17. Yin, Z., Gong, G., Wang, X., Liu, W., Wang, B., & Yin, J. (2023). The dual role of autophagy in periprosthetic osteolysis. Frontiers in Cell and Developmental Biology, 11, 1123753. https://doi.org/10.3389/fcell.2023.1123753

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yin, J., Yin, Z., Wang, B., Zhu, C., Sun, C., Liu, X., et al. (2019). Angiopoietin-1 protects spinal cord ischemia and reperfusion injury by inhibiting autophagy in rats. Neurochemical Research, 44(12), 2746–2754. https://doi.org/10.1007/s11064-019-02893-3

    Article  CAS  PubMed  Google Scholar 

  19. Yin, Z., Gong, G., Zhu, C., Wang, B., Sun, C., Liu, X., et al. (2020). Angiopoietin-1 protects neurons by inhibiting autophagy after neuronal oxygen-glucose deprivation/recovery injury. NeuroReport, 31(11), 825–832. https://doi.org/10.1097/wnr.0000000000001491

    Article  CAS  PubMed  Google Scholar 

  20. Berton, G., & Lowell, C. (1999). Integrin signalling in neutrophils and macrophages. Cellular Signalling, 11(9), 621–635. https://doi.org/10.1016/s0898-6568(99)00003-0

    Article  CAS  PubMed  Google Scholar 

  21. Gu, H., Cui, M., Bai, Y., Chen, F., Ma, K., Zhou, C., et al. (2010). Angiopoietin-1/Tie2 signaling pathway inhibits lipopolysaccharide-induced activation of RAW264.7 macrophage cells. Biochemical and Biophysical Research Communications, 392(2), 178–82. https://doi.org/10.1016/j.bbrc.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  22. Ding, S., Wu, D., Lu, Q., Qian, L., Ding, Y., Liu, G., et al. (2020). Angiopoietin-like 4 deficiency upregulates macrophage function through the dysregulation of cell-intrinsic fatty acid metabolism. American Journal of Cancer Research., 10(2), 595–609

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yugami, M., Odagiri, H., Endo, M., Tsutsuki, H., Fujii, S., Kadomatsu, T., et al. (2016). Mice deficient in angiopoietin-like protein 2 (Angptl2) gene show increased susceptibility to bacterial infection due to attenuated macrophage activity. The Journal of Biological Chemistry, 291(36), 18843–18852. https://doi.org/10.1074/jbc.M116.720870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie, C., Schwarz, E., Sampson, E., Dhillon, R., Li, D., O’Keefe, R., et al. (2012). Unique angiogenic and vasculogenic properties of renal cell carcinoma in a xenograft model of bone metastasis are associated with high levels of vegf-a and decreased ang-1 expression. Journal of Orthopaedic Research: Official publication of the Orthopaedic Research Society., 30(2), 325–333. https://doi.org/10.1002/jor.21500

    Article  CAS  PubMed  Google Scholar 

  25. Wang, J., Du, X., Wang, X., Xiao, H., Jing, N., Xue, W., et al. (2022). Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Letters, 526, 76–90. https://doi.org/10.1016/j.canlet.2021.11.017

    Article  CAS  PubMed  Google Scholar 

  26. Springer, M., Poole, L., Drake, L., Bock-Hughes, A., Boland, M., Smith, A., et al. (2021). BNIP3-dependent mitophagy promotes cytosolic localization of LC3B and metabolic homeostasis in the liver. Autophagy, 17(11), 3530–3546. https://doi.org/10.1080/15548627.2021.1877469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pilli, M., Arko-Mensah, J., Ponpuak, M., Roberts, E., Master, S., Mandell, M., et al. (2012). TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity, 37(2), 223–234. https://doi.org/10.1016/j.immuni.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao, L., Guan, P., Zhang, S., Yang, Y., Huang, X., & Wang, P. (2021). Downregulating expression of OPTN elevates neuroinflammation via AIM2 inflammasome- and RIPK1-activating mechanisms in APP/PS1 transgenic mice. Journal of Neuroinflammation., 18(1), 281. https://doi.org/10.1186/s12974-021-02327-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prabakaran, T., Bodda, C., Krapp, C., Zhang, B., Christensen, M., Sun, C., et al. (2018) Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. The EMBO Journal, 37(8). https://doi.org/10.15252/embj.201797858

  30. Lüsebrink, E., Goody, P., Lahrmann, C., Flender, A., Niepmann, S., Zietzer, A., et al. (2020). AIM2 stimulation impairs reendothelialization and promotes the development of atherosclerosis in mice. Frontiers in Cardiovascular Medicine, 7, 582482. https://doi.org/10.3389/fcvm.2020.582482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zochowski, K., Miranda, M., Cheung, J., Argentieri, E., Lin, B., Kaushik, S., et al. (2019). MRI of hip arthroplasties: Comparison of isotropic multiacquisition variable-resonance image combination selective (MAVRIC SL) acquisitions with a conventional MAVRIC SL acquisition. AJR American Journal of Roentgenology, 213(6), W277–W286. https://doi.org/10.2214/ajr.19.21606

    Article  PubMed  PubMed Central  Google Scholar 

  32. Camus, T., & Long, W. (2018). Total knee arthroplasty in young patients: Factors predictive of aseptic failure in the 2nd-4th decade. Journal of Orthopaedics, 15(1), 28–31. https://doi.org/10.1016/j.jor.2017.11.004

    Article  PubMed  Google Scholar 

  33. Zhang, Y., Yan, M., Niu, W., Mao, H., Yang, P., Xu, B., et al. (2022). Tricalcium phosphate particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/caspase-1 signaling axis in amouse osteolysis model. International Immunopharmacology., 107, 108699. https://doi.org/10.1016/j.intimp.2022.108699

    Article  CAS  PubMed  Google Scholar 

  34. Dong, Y., Chen, Y., Zhang, L., Tian, Z., & Dong, S. (2020). P2X7 receptor acts as an efficient drug target in regulating bone metabolism system. Biomedicine & pharmacotherapy = Biomedecine & Pharmacotherapie, 125, 110010. https://doi.org/10.1016/j.biopha.2020.110010

    Article  CAS  Google Scholar 

  35. Wang, L., Huang, B., Chen, X., & Su, J. (2020). New insight into unexpected bone formation by denosumab. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2020.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  36. Center, J., Lyles, K., & Bliuc, D. (2020). Bisphosphonates and lifespan. Bone, 141, 115566. https://doi.org/10.1016/j.bone.2020.115566

    Article  CAS  PubMed  Google Scholar 

  37. Yamashita, M., Ying, S., Zhang, G., Li, C., Cheng, S., Deng, C., et al. (2005). Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell, 121(1), 101–113. https://doi.org/10.1016/j.cell.2005.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Canonica, J., Foxton, R., Garrido, M., Lin, C., Uhles, S., Shanmugam, S., et al. (2023). Delineating effects of angiopoietin-2 inhibition on vascular permeability and inflammation in models of retinal neovascularization and ischemia/reperfusion. Frontiers in Cellular Neuroscience, 17, 1192464. https://doi.org/10.3389/fncel.2023.1192464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zuo, Y., He, Z., Chen, Y., & Dai, L. (2023). Dual role of ANGPTL4 in inflammation. Inflammation research: Official Journal of the European Histamine Research Society [et al]., 72(6), 1303–1313. https://doi.org/10.1007/s00011-023-01753-9

    Article  CAS  Google Scholar 

  40. Fu, X., Wang, J., Cai, H., Jiang, H., & Han, S. (2022). C16 peptide and Ang-1 improve functional disability and pathological changes in an Alzheimer’s disease model associated with vascular dysfunction. Pharmaceuticals (Basel, Switzerland), 15(4), 471. https://doi.org/10.3390/ph15040471

    Article  CAS  PubMed  Google Scholar 

  41. Chung, C., Seo, W., Silwal, P., & Jo, E. (2020). Crosstalks between inflammasome and autophagy in cancer. Journal of Hematology & Oncology, 13(1), 100. https://doi.org/10.1186/s13045-020-00936-9

    Article  Google Scholar 

  42. Fésüs, L., Demény, M., & Petrovski, G. (2011). Autophagy shapes inflammation. Antioxidants & Redox Signaling, 14(11), 2233–2243. https://doi.org/10.1089/ars.2010.3485

    Article  CAS  Google Scholar 

  43. Wang, L., & Shen, H. (2020). Seeing is believing: A novel tool for quantitating mitophagy. Cell Research, 30(9), 715–716. https://doi.org/10.1038/s41422-020-0360-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sharma, B., Karki, R., & Kanneganti, T. (2019). Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. European Journal of Immunology, 49(11), 1998–2011. https://doi.org/10.1002/eji.201848070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu, J., Nagasu, H., Murakami, T., Hoang, H., Broderick, L., Hoffman, H., et al. (2014). Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15514–15519. https://doi.org/10.1073/pnas.1414859111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Durga Devi, T., Babu, M., Mäkinen, P., Kaikkonen, M., Heinaniemi, M., Laakso, H., et al. (2017). Aggravated postinfarct heart failure in type 2 diabetes is associated with impaired mitophagy and exaggerated inflammasome activation. The American Journal of Pathology, 187(12), 2659–2673. https://doi.org/10.1016/j.ajpath.2017.08.023

    Article  CAS  PubMed  Google Scholar 

  47. Gurfinkel, Y., Polain, N., Sonar, K., Nice, P., Mancera, R., & Rea, S. (2022). Functional and structural consequences of TBK1 missense variants in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurobiology of Disease, 174, 105859. https://doi.org/10.1016/j.nbd.2022.105859

    Article  CAS  PubMed  Google Scholar 

  48. Garcia-Garcia, J., Berge, A., Overå, K., Larsen, K., Bhujabal, Z., Brech, A., et al. (2023). TRIM27 is an autophagy substrate facilitating mitochondria clustering and mitophagy via phosphorylated TBK1. The FEBS Journal, 290(4), 1096–1116. https://doi.org/10.1111/febs.16628

    Article  CAS  PubMed  Google Scholar 

  49. Li, L., Yu, M., Li, Y., Li, Q., Yang, H., Zheng, M., et al. (2021). Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioactive Materials, 6(5), 1255–1266. https://doi.org/10.1016/j.bioactmat.2020.10.018

    Article  CAS  PubMed  Google Scholar 

  50. Werner, J., Rosenberg, J., Keeley, K., & Agrawal, D. (2018). Immunobiology of periprosthetic inflammation and pain following ultra-high-molecular-weight-polyethylene wear debris in the lumbar spine. Expert Review of Clinical Immunology, 14(8), 695–706. https://doi.org/10.1080/1744666x.2018.1511428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cobelli, N., Scharf, B., Crisi, G., Hardin, J., & Santambrogio, L. (2011). Mediators of the inflammatory response to joint replacement devices. Nature Reviews Rheumatology, 7(10), 600–608. https://doi.org/10.1038/nrrheum.2011.128

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by grants from the National Natural Science Foundation of China (grant numbers 81871795 and 82172411).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Jian Yin: software, methodology, conceptualization, validation, and writing—original draft and review and editing. Peng Lai: investigation, conceptualization, visualization, and writing—original draft and review and editing. Libo Zhu: writing—review and editing. Jinzhong Ma: conceptualization, supervision, writing—review and editing, project administration, and funding acquisition.

Corresponding author

Correspondence to Jinzhong Ma.

Ethics declarations

Ethical Approval

The animal study protocol was approved by the Ethics Committee of Nanjing Medical University (Nanjing, China) and Shanghai General Hospital (Shanghai, China) and was conducted under the guidelines of the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Lai, P., Zhu, L. et al. Angiopoietin 1 Relieves Osteolysis by Promoting Macrophage Mitophagy Through the TBK1-SQSTM1 Pathway to Inhibit AIM2 Inflammasome-Mediated Pyroptosis. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04961-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04961-z

Keywords

Navigation