Skip to main content

Advertisement

Log in

Assessment of Culture Systems to Produce Bacterial Cellulose with a Kombucha Consortium

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is an emerging material for high-end applications due to its biocompatibility and physicochemical characteristics. However, the scale-up production of this material is still expensive, with the culture medium constituting one-third of the total cost. Herein, four different media (yeast nitrogen base, YNB; Murashige and Skoog, MSO; black tea; and NPK fertilizer solution) were compared while using sucrose as an additional carbon source. The yields of BC were best for YNB and fertilizer with 0.37 and 0.34 gBC/gC respectively. These two were then compared using glucose as a carbon source, with improvements in the production of 29% for the fertilizer, while only an 8% increase for YNB was seen; however, as the carbon concentration increased with a fixed N concentration, the yield was lower but the rate of production of BC increased. The obtained BC films were sanitized and showed low molecular weight and all the expected cellulose characteristic FT-IR bands while SEM showed nanofibers around 0.1 μm. Compared to traditional methods for lab-scale production, the use of the fertilizer and the consortium represent benefits compared to traditional lab-scale BC culture methods such as a competitive cost (two times lower) while posing resilience and tolerance to stress conditions given that it is produced by microbial communities and not with a single strain. Additionally, the low molecular weight of the films could be of interest for certain coating formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available on reasonable request.

References

  1. Ullah, H., Wahid, F., Santos, H. A., & Khan, T. (2016). Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 150, 330–352. https://doi.org/10.1016/j.carbpol.2016.05.029.

    Article  CAS  PubMed  Google Scholar 

  2. Khajavi, R., Esfahani, E. J., & Sattari, M. (2011). Crystalline structure of microbial cellulose compared with native and regenerated cellulose. International Journal of Polymeric Materials, 60, 1178–1192. https://doi.org/10.1080/00914037.2010.551372

    Article  CAS  Google Scholar 

  3. Gayathry, G. (2015). Production of nata de coco - a natural dietary fibre product from mature coconut water using Gluconacetobacter xylinum (sju-1). International Journal of Food and Fermentation Technology, 5, 231. https://doi.org/10.5958/2277-9396.2016.00006.4

    Article  Google Scholar 

  4. Wu, S. C., & Lia, Y. K. (2008). Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym, 54, 103–108. https://doi.org/10.1016/j.molcatb.2007.12.021.

    Article  CAS  Google Scholar 

  5. Oontawee, S., Jittavisuttiwong, P., & Phonprapai, C. (2015). Physical properties of xyloglucan/bacterial cellulose composite film plasticized with glycerol. Key Engineering Materials, 659, 24–27. https://doi.org/10.4028/www.scientific.net/KEM.659.24

    Article  Google Scholar 

  6. Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172–180. https://doi.org/10.1016/j.biortech.2016.02.071.

    Article  CAS  PubMed  Google Scholar 

  7. Wu, Z. Y., Liang, H. W., Chen, L. F., Hu, B. C., & Yu, S. H. (2016). Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 49, 96–105. https://doi.org/10.1021/acs.accounts.5b00380

    Article  CAS  PubMed  Google Scholar 

  8. Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59, 101–106. https://doi.org/10.1016/S0141-3910(97)00197-3.

    Article  CAS  Google Scholar 

  9. Fu, L., Zhang, J., & Yang, G. (2013). Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers, 92, 1432–1442. https://doi.org/10.1016/j.carbpol.2012.10.071.

    Article  CAS  PubMed  Google Scholar 

  10. Rivas, B., Moldes, A. B., Domı́nguez, J. M., & Parajó, J. C. (2004). Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. International Journal of Food Microbiology, 97, 93–98. https://doi.org/10.1016/j.ijfoodmicro.2004.05.006.

    Article  CAS  PubMed  Google Scholar 

  11. Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., Grotto, D., Gerenutti, M., & Chaud, M. V. (2016). Bacterial nanocellulose production and application: A 10-year overview. Applied Microbiology and Biotechnology, 100, 2063–2072. https://doi.org/10.1007/s00253-015-7243-4.

    Article  CAS  PubMed  Google Scholar 

  12. Ruka, D. R., Simon, G. P., & Dean, K. M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89, 613–622. https://doi.org/10.1016/j.carbpol.2012.03.059.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, K. Y., Buldum, G., Mantalaris, A., & Bismarck, A. (2014). More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14, 10–32. https://doi.org/10.1002/mabi.201300298

    Article  CAS  PubMed  Google Scholar 

  14. Aydın, Y. A., & Aksoy, N. D. (2014). Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Applied Microbiology and Biotechnology, 98, 1065–1075. https://doi.org/10.1007/s00253-013-5296-9.

    Article  CAS  PubMed  Google Scholar 

  15. Lin, S. P., Liu, C. T., Hsu, K. D., Hung, Y. T., Shih, T. Y., & Cheng, K. C. (2016). Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose, 23, 367–377. https://doi.org/10.1007/s10570-015-0855-0.

    Article  CAS  Google Scholar 

  16. Ramana, K. V., Tomar, A., & Singh, L. (2000). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World Journal of Microbiology & Biotechnology, 16, 245–248. https://doi.org/10.1023/A:1008958014270

    Article  CAS  Google Scholar 

  17. Oikawa, T., Morino, T., & Ameyama, M. (1995). Production of cellulose from D-arabitol by Acetobacter xylinum KU-1. Bioscience, Biotechnology, and Biochemistry, 59, 1564–1565. https://doi.org/10.1271/bbb.59.1564

    Article  CAS  Google Scholar 

  18. Çoban, E. P., & Biyik, H. (2011). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. African Journal of Biotechnology, 10, 5346–5354. https://doi.org/10.5897/AJB10.1693.

    Article  Google Scholar 

  19. Gea, S., Torres, F. G., Troncoso, O. P., Reynolds, C. T., Vilasecca, F., Iguchi, M., & Peijs, T. (2007). Biocomposites based on bacterial cellulose and Apple and Radish Pulp. International Polymer Processing, 22, 497–501. https://doi.org/10.3139/217.2059.

    Article  CAS  Google Scholar 

  20. Espinoza Tapia, J. C., LeBorgne, S., Olivares Hernández, R., Hernández-Guerrero, M., González Reyes, L., & Vigueras-Ramírez, J. G. (2020). Validación de método analítico para la cuantificación de compuestos de fermentación por HPLC–RI–UV. Revista tediq, 6, 100–103.

  21. Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29, 189–195. https://doi.org/10.1038/sj.jim.7000303

    Article  CAS  PubMed  Google Scholar 

  22. Pa'e, N., Zahan K. A., & Muhamad, I. I. (2011). Production of biopolymer from Acetobacter xylinum using different fermentation methods. International Journal of Engineering & Technology IJET-IJENS, 11, 90–97.

  23. Jaramillo, R., Perna, O., Revollo, A. B., Arrieta, C., & Escamilla, E. (2013). Efecto de diferentes concentraciones de fructosa sobre la producción de celulosa bacteriana en cultivo estático. Revista Colombiana de Ciencia Animal - RECIA, 5, 116. https://doi.org/10.24188/recia.v5.n1.2013.476

  24. Lindemann, S. R., Bernstein, H. C., Song, H. S., Fredrickson, J. K., Fields, M. W., Shou, W., Johnson, D. R., & Beliaev, A. S. (2016). Engineering microbial consortia for controllable outputs. Isme Journal, 10, 2077–2084. https://doi.org/10.1038/ismej.2016.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, L. L., Zhou, J. J., Quan, C. S., & Xiu, Z. L. (2017). Advances in industrial microbiome based on microbial consortium for biorefinery. Bioresour Bioprocess, 4, 11. https://doi.org/10.1186/s40643-017-0141-0.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on Kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13, 538–550. https://doi.org/10.1111/1541-4337.12073

    Article  PubMed  Google Scholar 

  27. Vázquez-Cabral, B. D., Larrosa-Pérez, M., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., González-Laredo, R. F., Rutiaga-Quiñones, J. G., Gamboa-Gómez, C. I., & Rocha-Guzmán, N. E. (2017). Oak Kombucha protects against oxidative stress and inflammatory processes. Chemico-Biological Interactions, 272, 1–9. https://doi.org/10.1016/j.cbi.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Chávez-Pacheco, J. L., Martínez-Yee, S., Contreras-Zentella, M., & Escamilla-Marván, E. (2004). Celulosa bacteriana en Gluconacetobacter xylinum: biosíntesis y aplicaciones. TIP Revista Especializada en Ciencias Químico-Biológicas, 7, 18–25.

  29. Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015.

    Article  CAS  PubMed  Google Scholar 

  30. Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171–178. https://doi.org/10.1016/j.fm.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  31. Chawla, P. R., Bajaj, I. B., Survase, S. A. & Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology, 47, 107–124.

  32. Gea, S., Reynolds, C. T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E., & Peijs, T. (2011). Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresource Technology, 102, 9105–9110. https://doi.org/10.1016/j.biortech.2011.04.077.

    Article  CAS  PubMed  Google Scholar 

  33. Tsalagkas, D., Lagaňa, R., Poljanšek, I., Oven, P., & Csoka, L. (2016). Fabrication of bacterial cellulose thin films self-assembled from sonochemically prepared nanofibrils and its characterization. Ultrasonics Sonochemistry, 28, 136–143. https://doi.org/10.1016/j.ultsonch.2015.07.010.

    Article  CAS  PubMed  Google Scholar 

  34. López-Simeon, R., Campos-Terán, J., Beltrán, H. I., & Hernández-Guerrero, M. (2012). Free-lignin cellulose obtained from agar industry residues using a continuous and minimal solvent reaction/extraction methodology. RSC Advances, 2, 12286. https://doi.org/10.1039/c2ra22185c

    Article  CAS  Google Scholar 

  35. Simpson, L. P., & Riggs, C. (1983). Bleaching with sodium hypochlorite: Interactions of temperature, time, pH and concentration with stain removal and fabric strength. Journal of the American Oil Chemists Society, 60, 1680–1686. https://doi.org/10.1007/BF02662434.

    Article  CAS  Google Scholar 

  36. Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17, 459–494. https://doi.org/10.1007/s10570-010-9405-y.

    Article  CAS  Google Scholar 

  37. Lee, Y. J., An, S. J., Bae, E. B., Gwon, H. J., Park, J. S., Jeong, S., Jeon, Y. C., Lee, S. H., Lim, Y. M., & Huh, J. B. (2017). The effect of thickness of resorbable bacterial cellulose membrane on guided bone regeneration. Materials, 10, 320. https://doi.org/10.3390/ma10030320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tabaii, M. J., & Emtiazi, G. (2016). Comparison of bacterial cellulose production among different strains and fermented media. Applied Food Biotechnology, 3, 35–41. www.journals.sbmu.ac.ir/afb

  39. Yano, H., Sugiyama, J., Nakagaito, A. N., Nogi, M., Matsuura, T., Hikita, M., & Handa, K. (2005). Optically transparent composites reinforced with networks of bacterial nanofibers. Advanced Materials, 17, 153–155. https://doi.org/10.1002/adma.200400597

    Article  CAS  Google Scholar 

  40. Borzani, W., & de Souza, S. J. (1995). Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotechnology Letters, 17, 1271–1272. https://doi.org/10.1007/BF00128400.

    Article  CAS  Google Scholar 

  41. Halib, N., Amin, M. C. I. M., & Ahmad, I. (2012). Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana, 41, 205–211.

  42. Auta, R., Adamus, G., Kwiecien, M., Radecka, I., & Hooley, P. (2017). Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. African Journal of Biotechnology, 16, 470–482. https://doi.org/10.5897/AJB2016.15486

    Article  CAS  Google Scholar 

  43. Berggren, R., Berthold, F., Sjöholm, E., & Lindström, M. (2003). Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. Journal of Applied Polymer Science, 88, 1170–1179. https://doi.org/10.1002/app.11767

    Article  CAS  Google Scholar 

  44. Feng, Y. H., Bin Wang, X., Lin, Q., Wu, Z. X., Pang, S. J., & Yin, X. Q. (2006). Biosynthesis of low molecular weight bacterial cellulose. Key Engineering Materials, 309–311, 497–502. https://doi.org/10.4028/www.scientific.net/KEM.309-311.497

    Article  Google Scholar 

  45. Einfeldt, L., & Klemm, D. (1997). The control of cellulose biosynthesis by Acetobacter Xylinum in view of molecular weight and molecular weight distribution part I: Change of molecular weight of bacterial cellulose by simple variation of culture conditions. Journal of Carbohydrate Chemistry, 16, 635–646. https://doi.org/10.1080/07328309708007341.

    Article  CAS  Google Scholar 

  46. Nainggolan, H., Gea, S., Bilotti, E., Peijs, T., & Hutagalung, S. D. (2013). Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi ® bionanocomposite. Beilstein Journal of Nanotechnology, 4, 325–329. https://doi.org/10.3762/bjnano.4.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scheurle, A., Kunisch, E., Boccaccini, A. R., Walker, T., Renkawitz, T., & Westhauser, F. (2024). Boric acid and molybdenum trioxide synergistically stimulate osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Journal of Trace Elements in Medicine and Biology, 83, 127405. https://doi.org/10.1016/j.jtemb.2024.127405

    Article  CAS  PubMed  Google Scholar 

  48. Cortizo, M. C., & Lorenzo de Mele, M. F. (2004). Cytotoxicity of copper ions released from metal. Biological Trace Element Research, 102, 129–141.

    Article  CAS  PubMed  Google Scholar 

  49. Cao, B., Zheng, Y., Xi, T., Zhang, C., Song, W., Burugapalli, K., Yang, H., & Ma, Y. (2012). Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: Effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomedical Microdevices, 14, 709–720. https://doi.org/10.1007/s10544-012-9651-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge José David Sepúlveda Sánchez and Guadalupe Cruz-Barrera for assistance with SEM and GPC respectively, as well as LEACSA for providing access to the GPC extension software.

Funding

This work was supported by the Consejo Nacional de Humanidades, Ciencias y Tecnologías in Mexico, Projects B134267/47410235 and 287615, and the Programa de Mejoramiento del Profesorado (PROMEP-SEP), grants UAM-PTC-140 and No. 47410256.

Author information

Authors and Affiliations

Authors

Contributions

MHG: conceptualization, methodology, investigation, formal analysis, data curation, visualization, resources, supervision, funding acquisition, project administration, writing—original draft. DGM: visualization, writing—original draft. JGC: conceptualization, methodology, investigation, formal analysis. SR: resources, writing—review and editing. JCT: resources, writing—review and editing. GVR: conceptualization, methodology, investigation, formal analysis, visualization, resources, supervision, funding acquisition, project administration, writing—original draft

Corresponding author

Correspondence to Gabriel Vigueras-Ramírez.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

All authors have agreed to the publication of this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 367 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Guerrero, M., Gomez-Maldonado, D., Gutiérrez-Castañeda, J. et al. Assessment of Culture Systems to Produce Bacterial Cellulose with a Kombucha Consortium. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04929-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04929-z

Keywords

Navigation