Skip to main content
Log in

Mapping of Genomic Regions for Biochemical and Physiological Parameters Contributing Towards Drought Tolerance in Horsegram (Macrotyloma uniflorum (Lam.) Verdc.)

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) is a drought hardy legume which can be grown in varied soil and temperature regimes. Though it has numerous, nutritive and medicinal benefits, it still lags behind other legumes in terms of genomic resources and genetic improvement. This crop is mostly cultivated on marginal and drought-prone area; thus, genetics of drought stress tolerance can be understood by studying the various drought parameters. To get insight, quantitative trait loci for drought-tolerant traits were identified using an intraspecific mapping population of 162 F8 recombinant inbred lines derived from a cross between HPKM249 and HPK4. The linkage map already developed was used along with the phenotypic data for biochemical and physiological parameters to identify genomic regions which are linked to drought tolerance. In the study, a total of seven QTLs were identified for ten different drought-related traits. One QTL for malondialdehyde content on linkage group 2, two QTLs for root length on linkage groups 3 and 9, one QTL each for proline and chlorophyll content under drought stress on linkage group 4, and one QTL each for root dry weight and root fresh weight on linkage group 5 were identified using composite interval mapping. The identified QTLs will be utilized in marker-assisted breeding and increase our understanding on the physiology of drought stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ranasinghe, R., & Ediriweera, E. (2017). Medicinal and nutritional values of Macrotyloma uniflorum (Lam.) Verdc (Kulattha): A conceptual study. Global Journal of Pharmaceutical Science, 1(2), 44–53.

  2. Cook, B.G., Pengelly, B.C., Brown, S.D., Donnelly, J.L., Eagles, D.A., Franco, M.A., Hanson, J., Mullen, B.F., Partridge, I.J., Peters, M. & Schultze-Kraft, R. (2005). Tropical forages: An interactive selection tool. [CD-ROM], CSIRO, DPI&F (Qld) Brisbane: CIAT and ILRI.

  3. Shirasawa, K., Chahota, R., Hirakawa, H., Nagano, S., Nagasaki, H., Sharma, T. R., et al. (2021). A chromosome-scale draft genome sequence of horsegram (Macrotyloma Uniflorum). Gigabyte, 1, 1–2.

    Article  Google Scholar 

  4. Vavilov, N. I. (1951). Phytogeographic basis of plant breeding: The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica, 13, 1–366.

    Google Scholar 

  5. Zohary, D. (1970). Centres of diversity and centres of origin. In: Genetic resources in plants- their exploration and conservation O.H. Frankel and E. Bennett (ed) Oxford, Blackwell, 33–42.

  6. Directorate of Economics and Statistics, Ministry of Agriculture, Government of India, New Delhi. 2016. Agricultural statistics at a glance.

  7. Krishna, K. R. (2010). Legume agro ecosystems of south India: Nutrient dynamics, ecology and productivity (pp. 372–382). Brown Walker Press.

    Google Scholar 

  8. Ramya, M., Reddy, K.E., Sivakumar, M., Pandurangaiah, M., Nareshkumar, A., Sudhakarbabu, O., Veeranagamallaiah, G. & Sudhakar, C. (2013). Molecular cloning, characterization and expression analysis of stress responsive Dehydrin genes from drought tolerant horsegram [Macrotyloma uniflorum (Lam.) Verdc.]. International Journal of Biotechnology and Biochemistry, 9(3), 293–312.

  9. Nezamuddin, S. (1970). Micellaneous: In pulse crops of India. P. Kachroo, Assit. Ed. M. Arif (eds) CSIR, New Delhi, India, 306–313.

  10. Zaman, A., & Mallick, S. (1991). Water use and seed yield of horsegram under different moisture regimes and mulches in semi-arid region of Eastern India. Journal of Agronomy and Crop Science, 167, 39–42.

    Article  Google Scholar 

  11. Sodani, S.N., Paliwal, R.V. & Jain, L. (2004). Phenotypic stability for seed yield in rainfed horsegram (Macrotyloma uniflorum [Lam.] Verdc). Paper presented in National Symposium on Arid Legumes for Sustainable Agriculture and Trade, Central Arid Zone Research Institute, Jodhpur.

  12. Yadava, N. D., & Vyas, N. L. (1994). Arid legumes. Agrobios.

    Google Scholar 

  13. Brink, M. Macrotyloma uniflorum (Lam.) Verdc (2006). In: Brink M, Belay G, (ed) PROTA 1: cereals and pulses/céréales et légumes secs. Wageningen: PROTA.

  14. Neelam, D.A. (2007). Identification and quantification of nutraceuticals from bengal gram and horse gram seed coat. Dissertation for Bachelor of Technology, Department of Biotechnology, Sathyabama University Chennai, India.

  15. Chunekar, K. C., Pandey, G. S., & Nighantu, B. (1998). Indian materi medica of Sri Bhavamisra (c.1500–1600 AD) Varanasi: Chaukhamba Bharati Academy, pp 984

  16. Perumal, S., & Sellamuthu, M. (2007). The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chemistry, 105, 950–958.

    Article  Google Scholar 

  17. National Academy of Sciences. (1978). Moth bean in tropical legumes: Resources for the future. National Academy of Sciences.

    Google Scholar 

  18. Balint, Z., Mutua, F., Muchiri, P., & Omuto, C. T. (2013). Monitoring drought with the combined drought index in Kenya. Developments in earth surface processes (Elsevier), 16, 41–356.

    Google Scholar 

  19. Manavalan, L. P., Guttikonda, S. K., Tran, L. S., & Nguyen, H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiology, 50, 1260–1276.

    Article  CAS  PubMed  Google Scholar 

  20. Toker, C. & Yadav, S.S. (2010). Legumes cultivars for stress environments. In: Climate change and management of cool season grain legume crops, S.S. Yadav et al. (eds.), Springer, .351–376.

  21. Kushwah, A., Bhatia, D., Barmukh, R., Singh, I., Singh, G., Bindra, S., Vij, S., Chellapilla, B., Pratap, A., Roorkiwal, M., & Kumar, S. (2022). Genetic mapping of QTLs for drought tolerance in chickpea (Cicer arietinum L.). Frontiers in Genetics, 13, 953898.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lalithambika, V. R., Bindu, M. R., Stephen, R., & Yadav, P. (2023). Evaluation of horse gram (Macrotyloma uniflorum) for moisture stress tolerance at seedling and reproductive stage. Biologia, 78(3), 707–725.

    Article  CAS  Google Scholar 

  23. Gupta, P. K., Balyan, H. S., & Gahlaut, V. (2017). QTL analysis for drought tolerance in wheat: Present status and future possibilities. Agronomy, 7, 5.

    Article  Google Scholar 

  24. Kim, S. M., Suh, J. P., Qin, Y., et al. (2015). Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.). Theoretical and Applied Genetics, 128, 1933–1943.

    Article  CAS  PubMed  Google Scholar 

  25. Varshney, R. K., Mir, R. R., Bhatia, S., Thudi, M., Hu, Y., Azam, S., Zhang, Y., Jaganathan, D., You, F. M., Gao, J., Riera-Lizarazu, O., & Luo, M. C. (2014). Integrated physical map with the genetic maps and reference genome sequence for chickpea (Cicer arietinum L.) improvement. Functional & Integrative Genomics, 14, 59–73.

    Article  CAS  Google Scholar 

  26. Jaganathan, D., et al. (2015). Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Molecular Genetics and Genomics, 290, 559–571.

    Article  CAS  PubMed  Google Scholar 

  27. Muchero, W., Diop, N. N., Bhat, P. R., Fenton, D., Wanamaker, S., Pottor, M., Hearne, S., Cisse, N., Fatokun, C., Ehlers, J. D., Roberts, P. A., & Close, T. J. (2009). A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proceedings of the National Academy of Sciences, 106, 18159–18164.

    Article  CAS  ADS  Google Scholar 

  28. Asfaw, A., & Blair, M. W. (2014). Quantification of drought tolerance in Ethiopian common bean varieties. Agricultural Sciences, 5, 124–139.

    Article  Google Scholar 

  29. Singh, D., Singh, C. K., Jyoti, T., & Tomar, R. S. S. (2016). Genetic analysis and molecular mapping of seedling survival drought tolerance gene in lentil (Lens culinaris Medik). Molecular Breeding, 36, 58.

    Article  Google Scholar 

  30. Liu, C., Wu, J., Wang, L., Fan, B., Cao, Z., Su, Q., Zhang, Z., Wang, Y., Tian, J., & Wang, S. (2017). Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theoretical and Applied Genetics, 130(11), 2375–2393.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma, V., Rana, M., Katoch, M., et al. (2015). Development of SSR and ILP markers in horsegram (Macrotyloma uniflorum), their characterization, cross-transferability and relevance for mapping. Molecular Breeding, 35, 102.

    Article  Google Scholar 

  32. Kaldate, R., Maneet, R., Sharma, V., Hirakawa, H., Kumar, R., Singh, G., Chahota, R. K., Isobe, S. N., & Sharma, T. R. (2017). Development of genome-wide SSR markers in horsegram and their use for genetic diversity and cross-transferability analysis. Molecular Breeding, 37(8), 103.

  33. Chahota, R. K., Sharma, V., Rana, M., Sharma, R., Choudhary, S., Sharma, T. R., Shirasawa, K., Hirakawa, H., & Isobe, S. N. (2020). Construction of a framework linkage map and genetic dissection of drought-and yield-related QTLs in horsegram (Macrotyloma uniflorum). Euphytica, 216(4), 1–1.

    Article  Google Scholar 

  34. Katoch, M., Mane, R. S., & Chahota, R. K. (2022). Identification of QTLs linked to phenological and morphological traits in RILs population of horsegram (Macrotyloma uniflorum). Frontiers in Genetics, 12, 762604.

  35. Choudhary, S., Isobe, S., & Chahota, R. K. (2022). Elucidation of drought tolerance potential of horsegram (Macrotyloma uniflorum Var.) germplasm using genome wide association studies. Gene, 20, 819.

    Google Scholar 

  36. Modi, M. R., Katoch, M., Thakur, N., Gautam, M., Choudhary, S., & Chahota, R. K. (2023). Mapping of genomic regions associated with dwarfing and the determinate growth habit in horsegram (Macrotyloma uniflorum). Czech Journal of Genetics and Plant Breeding, 59(4), 196–204.

    Article  Google Scholar 

  37. Yoshida, S., Forno, D. A., & Gomes, K. (1976). Laboratory manual for physiological studies of rice. IRRI los Banos (3rd ed., pp. 61–65) Philippines.

  38. Lichtenthaler, H., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b leaf extracts in different solvents. Biochemical Society Transactions, 603, 591–592.

    Article  Google Scholar 

  39. Bates, L. S., Waldern, R. P., & Teave, I. D. (1973). Rapid determination of free proline for water stress standies. Plant and Soil, 3, 205–207.

    Article  Google Scholar 

  40. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  PubMed  Google Scholar 

  41. Shrestha, R., Turner, N. C., Siddique, K. H. M., Turner, D. W., & Speijers, J. (2006). A water deficit during pod development in lentils reduces flower and pod numbers but not seed size. Australian Journal of Agricultural Research, 57, 427–438.

    Article  Google Scholar 

  42. Sairam, R. K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 584–593.

    Google Scholar 

  43. Wang, S., Basten, C. J., & Zeng, Z. B. (2005). Windows QTL cartographer 2.5. department of statistics. North Carolina State University, Raleigh. Available: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  44. Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. In: Proceeding of National Academy of Sciences, USA, 90(23), 10972–10976.

  45. Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136, 1457–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doerge, R. W., & Churchill, G. A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics, 142, 285–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mangin, B., Goffinet, B., & Rebai, A. (1994). Constructing confidence intervals for QTL location. Genetics, 138, 1301–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voorrips, R. E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.

    Article  CAS  PubMed  Google Scholar 

  49. Chahota, R. K., Sharma, T. R., Sharma, S. K., Kumar, N., & Rana, J. C. (2013). Horsegram. In M. Singh, D. Hari, & I. S. Bisht (Eds.), Genetic and genomic resources of grain legume improvement. Elsevier insight, pp 293–305.

  50. Fuller, D. Q., & Murphy, C. (2018). The origins and early dispersal of horsegram (Macrotyloma uniflorum), a major crop of ancient India. Genetic Resources and Crop evolution, 65, 285–305.

    Article  Google Scholar 

  51. Eker, T., Sari, D., Sari, H., Tosun, H. S., & Toker, C. (2022). A kabuli chickpea ideotype. Science, 12(1), 1–7.

    Google Scholar 

  52. Sari, H., Sari, D., Eker, T., & Toker, C. (2021). De novo super-early progeny in interspecific crosses Pisum sativum L.× P. fulvum Sibth. et Sm. Scientific Reports, 11(1), 1–4.

    Article  ADS  Google Scholar 

  53. Toker, C., Berger, J., Eker, T., Sari, D., Sari, H., Gokturk, R. S., Kahraman, A., Aydin, B., & von Wettberg, E. J. (2021). Cicer turcicum: A new Cicer species and its potential to improve chickpea. Frontiers in Plant Science, 12, 66289.

    Article  Google Scholar 

  54. Singh, K. B., Malhotra, R. S., Halila, M. H., Knights, E. J., & Verma, M. M. (1994). Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica, 73, 137–149.

    Article  Google Scholar 

  55. Idrissi, O., Houasli, C. H., Udupa, S. M., De Keyser, E., Van Damme, P., & De Riek, J. (2015). Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica, 204, 693–709.

    Article  CAS  Google Scholar 

  56. DeVicente, M., & Tanksley, S. (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 134, 585–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chahota, R. K., Shikha, D., Rana, M., Sharma, V., Nag, A., Sharma, T. R., Rana, J. C., Hirakawa, H., & Isabe, S. (2017). Development and characterization of SSR markers to study genetic diversity and population structure of horsegram germplasm (Macrotyloma uniflorum). Plant Molecular Biology Reports, 10, 1007.

    Google Scholar 

  58. Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 33, 531–537.

    Article  CAS  PubMed  Google Scholar 

  59. Pottorff, M. O., Li, G., Ehlers, J. D., Close, T. J., & Roberts, P. A. (2014). Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Molecular Breeding, 33, 779–791.

    Article  CAS  PubMed  Google Scholar 

  60. Leite, M. E., Santos, J. B., Carneiro, F. F., & Couto, K. R. (2011). Natural selection in common bean microsatellite alleles and identification of QTLs for grain yield. Electronic Journal of Biotechnology, 14, 1.

    Google Scholar 

  61. Fratini, R., Durán, Y., García, P., & Pérez de la Vega, M. (2007). Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Spanish Journal of Agricultural Research, 5, 348–356.

    Article  Google Scholar 

Download references

Funding

This work was supported by Grant numbers SR/WOS-A/LS-132/201 and EMR/2016/007237. Megha Katoch and Rakesh Chahota both have received research support from WOS-A and SERB, Department of Science & Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

RKC conceptualized the idea and provided all the facility to carry out genotypic and phenotypic work and finalized the manuscript; MK performed the experiment, recorded phenotypic data, performed molecular data analysis, and wrote the manuscript.

Corresponding author

Correspondence to Rakesh Kumar Chahota.

Ethics declarations

Ethics Approval

This is a plant-based study. Therefore, no ethical approval is required.

Consent to Participate

Informed consent was not obtained from any individual participants as the study did not include human research.

Consent for Publication

The authors affirm that there is no data generated on human participants; therefore, no consent is required for publication of the images.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoch, M., Chahota, R.K. Mapping of Genomic Regions for Biochemical and Physiological Parameters Contributing Towards Drought Tolerance in Horsegram (Macrotyloma uniflorum (Lam.) Verdc.). Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04858-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04858-x

Keywords

Navigation