Skip to main content

Advertisement

Log in

PICALM as a Novel Prognostic Biomarker and Its Correlation with Immune Infiltration in Breast Cancer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

PICALM (phosphatidylinositol-binding clathrin assembly protein) mutations have been linked to a number of human disorders, including leukemia, Alzheimer’s disease, and Parkinson’s disease. Nevertheless, the effect of PICALM on cancer, particularly on prognosis and immune infiltration in individuals with BRCA, is unknown. We obtained the data of breast cancer patients from The Cancer Genome Atlas (TCGA) database, and analyzed the expression of PICALM in breast cancer, its impact on survival’ and its role in tumor immune invasion. Finally, in vitro cellular experiments were performed to validate the results. Research has found that PICALM expression was shown to be downregulated in BRCA and to be substantially linked with clinical stage, histological type, PAM50, and age. PICALM downregulation was linked to a lower overall survival (OS) and disease-specific survival (DSS) in BRCA patients. A multivariate Cox analysis revealed that PICALM is an independent predictor of OS. The enriched pathways revealed by functional enrichment analysis included oxidative phosphorylation, angiogenesis, the TGF signaling pathway, and the IL-6/JAK/STAT3 signaling system. Furthermore, the amount of immune cell infiltration by B cells, eosinophils, mast cells, neutrophils, and T cells was positively linked with PICALM expression. Finally, we experimentally verified that low expression of PICALM can reduce proliferation, migration, and invasion in tumor cells. This evidence shows that PICALM expression impacts prognosis, immune infiltration, and pathway expression in breast cancer patients, and it might be a potential predictive biomarker for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69(1), 7–34.

    PubMed  Google Scholar 

  3. Zuo, Y., Li, Y., Zhou, Z., et al. (2017). Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomedicine & Pharmacotherapy, 95, 922–928.

    Article  CAS  Google Scholar 

  4. Hassan, M. K., Kumar, D., Naik, M., et al. (2018). The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One, 13(1), e0191377.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xu, J., Liu, L., Ma, R., et al. (2021). E2F1 Induces KIF26A transcription and promotes cell cycle progression via CDK-RB-E2Fs feedback loop in breast cancer. Frontiers in Oncology, 10, 530933.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu, H., Qiu, C., Wang, B., et al. (2021). Evaluating DNA methylation, gene expression, somatic mutation, and their combinations in inferring tumor tissue-of-origin. Frontiers in Cell and Development Biology, 9, 619330.

    Article  Google Scholar 

  7. Hunter, N. B., Kilgore, M. R., & Davidson, N. E. (2020). The long and winding road for breast cancer biomarkers to reach clinical utility. Clinical Cancer Research, 26(21), 5543–5545.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y., Xiang, J., Tang, L., et al. (2021). Identifying breast cancer-related genes based on a novel computational framework involving KEGG pathways and PPI network modularity. Frontiers in Genetics, 12, 596794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dreyling, M. H., Martinez-Climent, J. A., Zheng, M., et al. (1996). The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proceedings of the National Academy of Sciences of the United States of America, 93(10), 4804–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tebar, F., Bohlander, S. K., & Sorkin, A. (1999). Clathrin assembly lymphoid myeloid leukemia (CALM) protein: Localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Molecular Biology of the Cell, 10(8), 2687–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caudell, D., & Aplan, P. D. (2008). The role of CALM-AF10 gene fusion in acute leukemia. Leukemia, 22(4), 678–685.

    Article  CAS  PubMed  Google Scholar 

  12. Meyerholz, A., Hinrichsen, L., Groos, S., et al. (2005). Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic, 6(12), 1225–1234.

    Article  CAS  PubMed  Google Scholar 

  13. Scotland, P. B., Heath, J. L., Conway, A. E., et al. (2012). The PICALM protein plays a key role in iron homeostasis and cell proliferation. PLoS One, 7(8), e44252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki, M., Tanaka, H., Tanimura, A., et al. (2012). The clathrin assembly protein PICALM is required for erythroid maturation and transferrin internalization in mice. PLoS One, 7(2), e31854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Narayan, P., Sienski, G., Bonner, J. M., et al. (2020). PICALM rescues endocytic defects caused by the Alzheimer’s disease risk factor APOE4. Cell Reports, 33(1), 108224.

    Article  CAS  PubMed  Google Scholar 

  16. Periñán, M. T., Macías-García, D., Labrador-Espinosa, M. Á., et al. (2021). Association of PICALM with cognitive impairment in Parkinson’s disease. Movement Disorders, 36(1), 118–123.

    Article  PubMed  Google Scholar 

  17. Xu, W., Tan, L., & Yu, J. T. (2015). The role of PICALM in Alzheimer’s disease. Molecular Neurobiology, 52(1), 399–413.

    Article  CAS  PubMed  Google Scholar 

  18. Borel, C., Dastugue, N., Cances-Lauwers, V., et al. (2012). PICALM-MLLT10 acute myeloid leukemia: A French cohort of 18 patients. Leukemia Research, 36(11), 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  19. Tang, Z., Kang, B., Li, C., et al. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556–W560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uhlen, M., Zhang, C., Lee, S., et al. (2017). A pathology atlas of the human cancer transcriptome. Science., 357(6352), eaan2507.

    Article  PubMed  Google Scholar 

  21. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou, Y., Zhou, B., Pache, L., et al. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yu, G., Wang, L. G., Han, Y., et al. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 16(5), 284–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bindea, G., Mlecnik, B., Tosolini, M., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 39(4), 782–795.

    Article  CAS  PubMed  Google Scholar 

  25. Mayank, J. V. (2014). Drug target strategies in breast cancer treatment: Recent developments. Anti-Cancer Agents in Medicinal Chemistry, 14(10), 1414–1427.

    Article  CAS  PubMed  Google Scholar 

  26. Maruthanila, V. L., Elancheran, R., Kunnumakkara, A. B., et al. (2017). Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer, 24(2), 191–219.

    Article  CAS  PubMed  Google Scholar 

  27. Sun, C. C., Li, S. J., Hu, W., et al. (2022). Retraction notice to: Comprehensive analysis of the expression and prognosis for E2Fs in human breast cancer. Molecular Therapy, 30(7), 2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, F., Khvorova, A., Marshall, W., & Sorkin, A. (2004). Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. The Journal of Biological Chemistry, 279(16), 16657–16661.

    Article  CAS  PubMed  Google Scholar 

  29. Bohlander, S. K., Muschinsky, V., Schrader, K., et al. (2000). Molecular analysis of the CALM/AF10 fusion: Identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia, 14(1), 93–99.

    Article  CAS  PubMed  Google Scholar 

  30. Abdelhaleem, M., Beimnet, K., Kirby-Allen, M., et al. (2007). High incidence of CALM-AF10 fusion and the identification of a novel fusion transcript in acute megakaryoblastic leukemia in children without Down’s syndrome. Leukemia, 21(2), 352–353.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, L., Ren, L., Zhang, X., et al. (2019). Overexpression of PIMREG promotes breast cancer aggressiveness via constitutive activation of NF-κB signaling. EBioMedicine, 43, 188–200.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, T., Kang, G., Wang, T., et al. (2018). Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncology Letters, 16(1), 687–702.

    PubMed  PubMed Central  Google Scholar 

  33. Ying, L., Chen, Q., Wang, Y., et al. (2012). Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Molecular BioSystems, 8(9), 2289–2294.

    Article  CAS  PubMed  Google Scholar 

  34. Kuol, N., Stojanovska, L., Apostolopoulos, V., et al. (2018). Role of the nervous system in tumor angiogenesis. Cancer Microenvironment, 11(1), 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roskoski, R., Jr. (2007). Vascular endothelial growth factor (VEGF) signaling in tumor progression. Critical Reviews in Oncology/Hematology, 62(3), 179–213.

    Article  PubMed  Google Scholar 

  36. Garcea, G., Lloyd, T. D., Gescher, A., et al. (2004). Angiogenesis of gastrointestinal tumours and their metastases--A target for intervention? European Journal of Cancer, 40(9), 1302–1313.

    Article  CAS  PubMed  Google Scholar 

  37. Syed, V. (2016). TGF-β Signaling in Cancer. Journal of Cellular Biochemistry, 117(6), 1279–1287.

    Article  CAS  PubMed  Google Scholar 

  38. Tang, X., Shi, L., Xie, N., et al. (2017). SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nature Communications, 8(1), 318.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cao, W. H., Liu, X. P., Meng, S. L., et al. (2016). USP4 promotes invasion of breast cancer cells via Relaxin/TGF-β1/Smad2/MMP-9 signal. European Review for Medical and Pharmacological Sciences, 20(6), 1115–1122.

    PubMed  Google Scholar 

  40. Li, B., Severson, E., Pignon, J. C., et al. (2016). Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biology, 17(1), 174.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, J., Tan, Z., He, J., et al. (2020). Identification of three molecular subtypes based on immune infiltration in ovarian cancer and its prognostic value. Bioscience Reports, 40(10), BSR20201431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Havel, J. J., Chowell, D., & Chan, T. A. (2019). The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews. Cancer, 19(3), 133–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, S. S., Liu, W., Ly, D., et al. (2019). Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer. Cellular & Molecular Immunology, 16(1), 6–18.

    Article  CAS  Google Scholar 

  44. Yang, C., Lee, H., Jove, V., et al. (2013). Prognostic significance of B-cells and pSTAT3 in patients with ovarian cancer. PLoS One, 8(1), e54029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Komi, D. E. A., & Redegeld, F. A. (2020). Role of mast cells in shaping the tumor microenvironment. Clinical Reviews in Allergy and Immunology, 58(3), 313–325.

    Article  CAS  PubMed  Google Scholar 

  46. Sammarco, G., Varricchi, G., Ferraro, V., et al. (2019). Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. International Journal of Molecular Sciences, 20(9), 2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reddy, S. M., Reuben, A., Barua, S., et al. (2019). Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer. Cancer Immunology Research, 7(6), 1025–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the TCGA database for sharing a large amount of data and the convenience provided by several online database tools. At the same time, thank you to Baidu Translate and DeepL for providing free translation and polishing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. All authors read and approved the final manuscript. All authors commented on previous versions of the manuscript. All authors agree to become authors of the manuscript.

Corresponding author

Correspondence to Xuchen Cao.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

All authors consent to the publication of this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 11 kb)

ESM 2

(XLSX 9 kb)

ESM 3

(XLSX 6529 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A, N., Lyu, P., Yu, Y. et al. PICALM as a Novel Prognostic Biomarker and Its Correlation with Immune Infiltration in Breast Cancer. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04840-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04840-z

Keywords

Navigation