Skip to main content
Log in

Luffa cylindrica (Sponge Gourd) Fibers in Treatment of Greywater: an Aerobic Fixed-Film Reactor Approach

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The need for potable water consumption in urban and suburban regions can be decreased by greywater treatment and its reuse. Utilizing natural fibers may provide sustainable solutions in addressing challenges related to water resource management. In this study, a fixed-film reactor was designed with Luffa cylindrica (an annually occurring fruit) as a bio-carrier. The lab-scale reactors were configured with and without Luffa cylindrica and were run for 90 days in fed-batch mode. Scanning electron microscopy (SEM) was performed to validate biofilm production over time. Monitoring COD, nitrogen, and total phosphate removal allowed for analysis of treatment effectiveness. Results demonstrated the treatment efficiency for the experimental reactor was 70.96%, 97.02%, 92.57%, and 81.20% for COD, nitrogen, phosphate, and anionic surfactant (AS), respectively. 16 s rRNA gene sequencing of bio-carrier and control greywater samples was carried out. Many bacteria known to break down anionic surfactants were observed, and microbial succession was witnessed in the control reactor vs. the experimental reactor samples. The three most prevalent genera in the experimental samples were Chlorobium, Chlorobaculum, and Terrimonas. However, it is crucial to underscore that additional research is essential to solidify our understanding in this domain, with this study laying the fundamental groundwork.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Abbasi, H., & Asgari, H. (2018). Removal of methylene blue from aqueous solutions using Luffa adsorbent modified with sodium dodecyl sulfate anionic surfactant. Global NEST Journal, 20(3), 582–588.

    Article  CAS  Google Scholar 

  2. Abed, S. N. (2017). Floating treatment wetlands for synthetic greywater remediation (Doctoral dissertation, University of Salford).

  3. Aqeel, H., Weissbrodt, D. G., Cerruti, M., Wolfaardt, G. M., Wilén, B. M., & Liss, S. N. (2019). Drivers of bioaggregation from flocs to biofilms and granular sludge. Environmental Science: Water Research and Technology, 5(12), 2072–2089.

    Google Scholar 

  4. Arora, U., Khuntia, H. K., Chanakya, H. N., & Kapley, A. (2022). Surfactants: Combating the fate, impact, and aftermath of their release in the environment. International Journal of Environmental Science and Technology, 1–24.

  5. Babaei, F., Ehrampoush, M. H., Eslami, H., Ghaneian, M. T., Fallahzadeh, H., Talebi, P., & Ebrahimi, A. A. (2019). Removal of linear alkylbenzene sulfonate and turbidity from greywater by a hybrid multi-layer slow sand filter microfiltration ultrafiltration system. Journal of Cleaner Production, 211, 922–931.

    Article  CAS  Google Scholar 

  6. Bai, Y., Zhang, Y., Quan, X., & Chen, S. (2016). Nutrient removal performance and microbial characteristics of a full-scale IFAS-EBPR process treating municipal wastewater. Water Science and Technology, 73(6), 1261–1268.

    Article  PubMed  Google Scholar 

  7. Boeije, G., Corstanje, R., Rottiers, A., & Schowanek, D. (1999). Adaptation of the CAS test system and synthetic sewage for biological nutrient removal: Part I: Development of a new synthetic sewage. Chemosphere, 38(4), 699–709.

    Article  CAS  PubMed  Google Scholar 

  8. Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6, 8.

    Article  Google Scholar 

  9. Chaali, M., Naghdi, M., Brar, S. K., & Avalos-Ramirez, A. (2018). A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. Journal of Chemical Technology and Biotechnology, 93(11), 3113–3124.

    Article  CAS  Google Scholar 

  10. Chanakya, H. N., & Khuntia, H. K. (2014). Treatment of gray water using anaerobic biofilms created on synthetic and natural fibers. Process Safety and Environmental Protection, 92(2), 186–192.

    Article  CAS  Google Scholar 

  11. Dang, H. T., Dinh, C. V., Nguyen, K. M., Tran, N. T., Pham, T. T., & Narbaitz, R. M. (2020). Loofah sponges as bio-carriers in a pilot-scale integrated fixed-film activated sludge system for municipal wastewater treatment. Sustainability, 12(11), 4758.

    Article  CAS  Google Scholar 

  12. Eslami, H., Ehrampoush, M. H., Falahzadeh, H., Hematabadi, P. T., Khosravi, R., Dalvand, A., & Ebrahimi, A. A. (2018). Biodegradation and nutrients removal from greywater by an integrated fixed-film activated sludge (IFAS) in different organic loadings rates. AMB Express, 8(1), 1–8.

    Article  CAS  Google Scholar 

  13. Garcia, S. L., Mehrshad, M., Buck, M., Tsuji, J. M., Neufeld, J. D., McMahon, K. D., & Peura, S. (2021). Freshwater Chlorobia exhibit metabolic specialization among cosmopolitan and endemic populations. Msystems, 6(3), e01196-e1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jabornig, S., & Podmirseg, S. M. (2015). A novel fixed fibre biofilm membrane process for on-site greywater reclamation requiring no fouling control. Biotechnology and Bioengineering, 112(3), 484–493.

    Article  CAS  PubMed  Google Scholar 

  15. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1), D109–D114.

    Article  CAS  PubMed  Google Scholar 

  16. Kapley, A., & Purohit, H. J. (2009). Diagnosis of treatment efficiency in industrial wastewater treatment plants: A case study at a refinery ETP. Environmental Science and Technology, 43(10), 3789–3795.

    Article  CAS  PubMed  Google Scholar 

  17. Khadir, A., Motamedi, M., Pakzad, E., Sillanpää, M., & Mahajan, S. (2021). The prospective utilization of Luffa fibres as a lignocellulosic bio-material for environmental remediation of aqueous media: A review. Journal of Environmental Chemical Engineering, 9(1), 104691.

    Article  CAS  Google Scholar 

  18. Khuntia, H. K., Chandrashekar, S., & Chanakya, H. N. (2019). Treatment of household greywater laden with household chemical products in a multi-chambered anaerobic biofilm reactor. Sustainable Cities and Society, 51, 101783.

    Article  Google Scholar 

  19. Li, E., Jin, X., & Lu, S. (2018). Microbial communities in biological denitrification system using methanol as carbon source for treatment of reverse osmosis concentrate from coking wastewater. Journal of Water Reuse and Desalination, 8(3), 360–371.

    Article  CAS  Google Scholar 

  20. Liu, R., Huang, X., Chen, L., Wen, X., & Qian, Y. (2005). Operational performance of a submerged membrane bioreactor for reclamation of bath wastewater. Process Biochemistry, 40(1), 125–130.

    Article  CAS  Google Scholar 

  21. Merz, C., Scheumann, R., El Hamouri, B., & Kraume, M. (2007). Membrane bioreactor technology for the treatment of greywater from a sports and leisure club. Desalination, 215(1–3), 37–43.

    Article  CAS  Google Scholar 

  22. Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., & Edwards, R. (2008). The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC bioinformatics, 9(1), 1–8.

    Article  Google Scholar 

  23. Moura, A. D. L., Centurion, V. B., Okada, D. Y., Motteran, F., Delforno, T. P., Oliveira, V. M., & Varesche, M. B. A. (2019). Laundry wastewater and domestic sewage pilot-scale anaerobic treatment: Microbial community resilience regarding sulfide production. Journal of Environmental Management, 251, 109495.

    Article  CAS  PubMed  Google Scholar 

  24. Mungray, A. K., & Kumar, P. (2009). Fate of linear alkylbenzene sulfonates in the environment: A review. International Biodeteriorationand Biodegradation, 63(8), 981–987.

    Article  CAS  Google Scholar 

  25. Nagpal, S., Haque, M. M., Singh, R., & Mande, S. S. (2019). iVikodak—A platform and standard workflow for inferring, analyzing, comparing, and visualizing the functional potential of microbial communities. Frontiers in Microbiology, 9, 3336.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Okada, D. Y., Delforno, T. P., Etchebehere, C., & Varesche, M. B. (2014). Evaluation of the microbial community of upflow anaerobic sludge blanket reactors used for the removal and degradation of linear alkylbenzene sulfonate by pyrosequencing. International Biodeterioration and Biodegradation, 96, 63–70.

    Article  Google Scholar 

  27. Oteng-Peprah, M., Acheampong, M. A., & DeVries, N. K. (2018). Greywater characteristics, treatment systems, reuse strategies and user perception—A review. Water, Air, and Soil Pollution, 229(8), 1–16.

    Article  CAS  Google Scholar 

  28. Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), D206–D214.

    Article  CAS  PubMed  Google Scholar 

  29. Prajapati, B., & Bergen Jensen, M. (2019). Grey water treatment through biofilm development and sediment accumulation in a horizontal batch-operated open reactor. Urban Water Journal, 16(8), 594–599.

    Article  CAS  Google Scholar 

  30. Ramprasad, C., & Philip, L. (2016). Surfactants and personal care products removal in pilot scale horizontal and vertical flow constructed wetlands while treating greywater. Chemical Engineering Journal, 284, 458–468.

    Article  CAS  Google Scholar 

  31. Rosen, M. J., Li, F., Morrall, S. W., & Versteeg, D. J. (2001). The relationship between the interfacial properties of surfactants and their toxicity to aquatic organisms. Environmental Science and Technology, 35(5), 954–959.

    Article  CAS  PubMed  Google Scholar 

  32. Ruiz-Marín, A., Campos-Garcia, S., Zavala-Loría, J., Solana, F., & Canedo-López, Y. (2009). Assessment of Luffa cylindrica as support in biofilms reactors for the biological treatment of domestic wastewater. Water, Air, and Soil Pollution, 199(1–4), 13–21.

    Article  Google Scholar 

  33. Sievers, J. C., Londong, J., Albold, A., and Oldenburg, M. (2014, May). Characterisation of greywater–estimation of design values. In Proceedings of 17th International EWA Symposium' WatEnergyResources–Water, Energy and Resources: Innovative Options and Sustainable Solutions' During IFAT, 5–9 May 2014, Munich. European Water Association, Hennef, Gemany. http://www.ewa-online. eu/id-17-symposium-proceedings. html.

  34. Uddin, S. M. N., Li, Z., Adamowski, J. F., Ulbrich, T., Mang, H. P., Ryndin, R., & Cheng, S. (2016). Feasibility of a ‘greenhouse system’ for household greywater treatment in nomadic-cultured communities in peri-urban Ger areas of Ulaanbaatar, Mongolia: An approach to reduce greywater-borne hazards and vulnerability. Journal of Cleaner Production, 114, 431–442.

    Article  CAS  Google Scholar 

  35. Vehapi, M., & Özçimen, D. (2021). Antimicrobial and bacteriostatic activity of surfactants against B. subtilis for microbial cleaner formulation. Archives of Microbiology, 1–9.

  36. Wahab, M. A., Habouzit, F., Bernet, N., Steyer, J. P., Jedidi, N., & Escudié, R. (2014). Sequential operation of a hybrid anaerobic reactor using a lignocellulosic biomass as biofilm support. Bioresource Technology, 172, 150–155.

    Article  CAS  PubMed  Google Scholar 

  37. Weiß, S., Zankel, A., Lebuhn, M., Petrak, S., Somitsch, W., & Guebitz, G. M. (2011). Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage. Bioresource Technology, 102(6), 4353–4359.

    Article  PubMed  Google Scholar 

  38. Wurochekke, A. A., Mohamed, R. M. S., Al-Gheethi, A. A., Atiku, H., Amir, H. M., & Matias-Peralta, H. M. (2016). Household greywater treatment methods using natural materials and their hybrid system. Journal of Water and Health, 14(6), 914–928.

    Article  CAS  PubMed  Google Scholar 

  39. Yadav, S., Arora, U., & Zaman, K. (2023). Antibiotics, antibiotic-resistant bacteria, and the environment. In Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources (pp. 117–142). Academic Press.

  40. Yadav, T. C., Khardenavis, A. A., & Kapley, A. (2014). Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresource Technology, 165, 257–264.

    Article  CAS  PubMed  Google Scholar 

  41. Yadav, T. C., Pal, R. R., Shastri, S., Jadeja, N. B., & Kapley, A. (2015). Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater. Bioresource Technology, 188, 24–32.

    Article  CAS  PubMed  Google Scholar 

  42. Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences, 20(14), 3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, L., Liu, M., Zhang, S., Yang, Y., & Peng, Y. (2015). Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge. Chemosphere, 140, 114–118.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, S., Wang, Y., He, W., Wu, M., Xing, M., Yang, J., & Yin, D. (2013). Responses of biofilm characteristics to variations in temperature and NH4+-N loading in a moving-bed biofilm reactor treating micro-polluted raw water. Bioresource Technology, 131, 365–373.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Y., Zhang, Z., Zhang, L., Xu, S., Guo, B., Liu, Y., & Xia, S. (2019). Promoting waste activated sludge reduction by linear alkylbenzene sulfonates: Surfactant dose control extracellular polymeric substances solubilization and microbial community succession. Journal of Hazardous Materials, 374, 74–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank Dr. Girivyankatesh Hippargi, CSIR-NEERI, for helping with the scanning electron microscopy (SEM). The manuscript was checked using iThenticate software at NEERI, Knowledge Resource Center, KRC no.-CSIR-NEERI/KRC/2020/JULY/DRC-CSUM/1.

Funding

The authors wish to acknowledge the Department of Biotechnology Funded project, India, for providing the funds necessary for this work. We are incredibly grateful to the Director, CSIR-NEERI, Nagpur, for support.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, experiments, data collection, initial draft, and analysis were performed by UA. Editing and approvals were done by AK, HKK, and HNC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Atya Kapley.

Ethics declarations

Ethical Approval

This article does not contain any human trial subjects.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Supplementary file2 (DOCX 2260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, U., Khuntia, H.K., Chanakya, H.N. et al. Luffa cylindrica (Sponge Gourd) Fibers in Treatment of Greywater: an Aerobic Fixed-Film Reactor Approach. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04804-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04804-3

Keywords

Navigation