Skip to main content

Advertisement

Log in

Carboxy-Functionalized Covalent Organic Framework as a Carrier for Lipase Immobilization and Its Application in Inhibitors Screening

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) with large specific surface areas, high porosity, good stability, and designable structure are promising carriers for immobilized enzymes. It is important to explore lipase inhibitors from natural foods as lipase inhibitors are closely related to the treatment of obesity. In this work, a carboxyl functionalized covalent organic framework (TpBD-3COOH) was prepared by solvothermal method for covalent immobilization of porcine pancreatic lipase (PPL) and obtained the enzyme-decorated COF (PPL@COF). The immobilized lipase showed wider pH and temperature tolerance with the same optimal pH and temperature of 7.5 and 50 ℃ compared to free lipase. After 6 successive reuses, the PPL@COF maintained 53.0% of its original activity. Immobilized lipase also displayed enhanced storage stability (55.4% after 14 days at 4 ℃). When p-nitrophenyl acetate was applied as the substrate, the calculated Michaelis constant was 3.57 mM and the half maximal inhibitory concentration of orlistat was 3.20 μM. Finally, the PPL@COF was used for enzyme inhibitors screening from natural foods combined with UV spectrophotometry, and Hawthorn was screened for excellent lipase inhibitory activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Code Availability

Data available on request from the authors.

References

  1. Choi, J.-M., Han, S.-S., Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33, 1443–1454.https://doi.org/10.1016/j.biotechadv.2015.02.014

  2. Zhang, Y., He, S., Simpson, B. K. (2018). Enzymes in food bioprocessing—novel food enzymes, applications, and related techniques.Current Opinion in Food Science, 19, 30–35. https://doi.org/10.1016/j.cofs.2017.12.007

  3. Liu, J., Ma, R. T., & Shi, Y. P. (2020). Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods - A review. Analytica Chimica Acta, 1101, 9–22. https://doi.org/10.1016/j.aca.2019.11.073

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X., Lan, P. C., & Ma, S. J. A. C. S. (2020). Metal–organic frameworks for enzyme immobilization: Beyond host matrix materials. ACS Central Science, 6, 1497–1506. https://doi.org/10.1021/acscentsci.0c00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Datta, S., Christena, L. R., Rajaram, Y. R. S. J. B. (2013). Enzyme immobilization: An overview on techniques and support materials. 3 Biotech, 3, 1–9. https://doi.org/10.1007/s13205-012-0071-7

  6. Patel, H., Rawtani, D., Agrawal, Y. (2019). A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using Acetylcholinesterase-a review. Trends in Food Science & Technology, 85, 78–91. https://doi.org/10.1016/j.tifs.2019.01.007

  7. Kumar, A., Park, G. D., Patel, S. K., Kondaveeti, S., Otari, S., Anwar, M. Z., Kalia, V. C., Singh, Y., Kim, S. C., & Cho, B.-K.J.C.E.J. (2019). SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chemical Engineering Journal, 359, 1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  8. Khoshnevisan, K., Vakhshiteh, F., Barkhi, M., Baharifar, H., Poor-Akbar, E., Zari, N., Stamatis, H., & Bordbar, A.-K.J.M.C. (2017). Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances. Molecular Catalysis, 442, 66–73. https://doi.org/10.1016/j.mcat.2017.09.006

    Article  CAS  Google Scholar 

  9. Feng, Y., Xu, Y., Liu, S., Wu, D., Su, Z., Chen, G., Liu, J., Li, G. (2022). Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coordination Chemistry Reviews, 459. https://doi.org/10.1016/j.ccr.2022.214414

  10. Xue, M., Li, B., Qiu, S., & Chen, B. (2016). Emerging functional chiral microporous materials: Synthetic strategies and enantioselective separations. Materials Today, 19, 503–515. https://doi.org/10.1016/j.mattod.2016.03.003

    Article  CAS  Google Scholar 

  11. Cheng, H. Y., & Wang, T. (2020). Covalent organic frameworks in catalytic organic synthesis. Advanced Synthesis & Catalysis, 363, 144–193. https://doi.org/10.1002/adsc.202001086

    Article  CAS  Google Scholar 

  12. Das, S., Feng, J., & Wang, W. (2020). Covalent organic frameworks in separation. Annual Review of Chemical and Biomolecular Engineering, 11, 131–153. https://doi.org/10.1146/annurev-chembioeng-112019-084830

    Article  PubMed  Google Scholar 

  13. Zhu, L., Zhang, Y. B. (2017). Crystallization of covalent organic frameworks for gas storage applications. Molecules, 22. https://doi.org/10.3390/molecules22071149

  14. Zhou, Z., & Hartmann, M. J. C. S. R. (2013). Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews, 42, 3894–3912. https://doi.org/10.1039/c3cs60059a

    Article  CAS  PubMed  Google Scholar 

  15. Kandambeth, S., Venkatesh, V., Shinde, D. B., Kumari, S., Halder, A., Verma, S., & Banerjee, R. (2015). Self-templated chemically stable hollow spherical covalent organic framework. Nature Communications, 6, 6786. https://doi.org/10.1038/ncomms7786

    Article  CAS  PubMed  Google Scholar 

  16. Sun, Q., Fu, C.-W., Aguila, B., Perman, J., Wang, S., Huang, H.-Y., Xiao, F.-S., & Ma, S. (2018). Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. Journal of the American Chemical Society, 140, 984–992. https://doi.org/10.1021/jacs.7b10642

    Article  CAS  PubMed  Google Scholar 

  17. Li, T., Deng, D., Tan, D., Chen, S., Ji, Y., & Li, R. (2022). Immobilized glucose oxidase on hierarchically porous COFs and integrated nanozymes: A cascade reaction strategy for ratiometric fluorescence sensors. Analytical and Bioanalytical Chemistry, 414, 6247–6257. https://doi.org/10.1007/s00216-022-04197-y

    Article  CAS  PubMed  Google Scholar 

  18. Sun, Q., Aguila, B., Lan, P. C., Ma, S. (2019). Tuning pore heterogeneity in covalent organic frameworks for enhanced enzyme accessibility and resistance against denaturants. Adv Mater, 31, e1900008. https://doi.org/10.1002/adma.201900008

  19. Wang, L., Liang, H., Xu, M., Wang, L., Xie, Y., Song, Y. (2019). Ratiometric electrochemical biosensing based on double-enzymes loaded on two-dimensional dual-pore COFETTA-TPAL. Sensors and Actuators B: Chemical, 298. https://doi.org/10.1016/j.snb.2019.126859

  20. Zhang, S., Zheng, Y., An, H., Aguila, B., Yang, C. X., Dong, Y., Xie, W., Cheng, P., Zhang, Z., Chen, Y., & Ma, S. (2018). Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angewandte Chemie (International ed. in English), 57, 16754–16759. https://doi.org/10.1002/anie.201810571

    Article  CAS  PubMed  Google Scholar 

  21. Yue, J.-Y., Ding, X.-L., Wang, L., Yang, R., Bi, J.-S., Song, Y.-W., Yang, P., Ma, Y., & Tang, B. (2021). Novel enzyme-functionalized covalent organic frameworks for the colorimetric sensing of glucose in body fluids and drinks. Materials Chemistry Frontiers, 5, 3859–3866. https://doi.org/10.1039/d1qm00314c

    Article  CAS  Google Scholar 

  22. Xing, C., Mei, P., Mu, Z., Li, B., Feng, X., Zhang, Y., & Wang, B. (2022). Enhancing enzyme activity by the modulation of covalent interactions in the confined channels of covalent organic frameworks. Angewandte Chemie (International ed. in English), 61, e202201378. https://doi.org/10.1002/anie.202201378

    Article  CAS  PubMed  Google Scholar 

  23. Oliveira, F. L., de Souza, S. P., Bassut, J., Alvarez, H. M., Garcia-Basabe, Y., Alves de Souza, R. O. M., Esteves, P. M., & Goncalves, R. S. B. (2019). Enzyme-decorated covalent organic frameworks as nanoporous platforms for heterogeneous biocatalysis. Chemistry, 25, 15863–15870. https://doi.org/10.1002/chem.201903807

    Article  CAS  PubMed  Google Scholar 

  24. Canning, K. L., Brown, R. E., Jamnik, V. K., & Kuk, J. L. (2014). Relationship between obesity and obesity-related morbidities weakens with aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69, 87–92. https://doi.org/10.1093/gerona/glt026

    Article  PubMed  Google Scholar 

  25. Woodall, M. J., Neumann, S., Campbell, K., Pattison, S. T., Young, S. L. (2020). The effects of obesity on anti-cancer immunity and cancer immunotherapy. Cancers (Basel), 12. https://doi.org/10.3390/cancers12051230

  26. Lartey, S. T., Si, L., Otahal, P., de Graaff, B., Boateng, G. O., Biritwum, R. B., Minicuci, N., Kowal, P., Magnussen, C. G., Palmer, A. J. (2020). Annual transition probabilities of overweight and obesity in older adults: Evidence from World Health Organization Study on global AGEing and adult health. Social Science and Medicine, 247, 112821. https://doi.org/10.1016/j.socscimed.2020.112821

  27. Klein, S. (2004). Long-term pharmacotherapy for obesity. Obesity Research, 12(Suppl), 163S-166S. https://doi.org/10.1038/oby.2004.283

    Article  CAS  PubMed  Google Scholar 

  28. Sumithran, P., & Proietto, J. (2014). Benefit-risk assessment of orlistat in the treatment of obesity. Drug Safety, 37, 597–608. https://doi.org/10.1007/s40264-014-0210-7

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, H., Wu, Z. Y., Yang, Y. Y., Yang, F. Q., & Li, S. P. (2019). Recent applications of immobilized biomaterials in herbal analysis. Journal of Chromatography A, 1603, 216–230. https://doi.org/10.1016/j.chroma.2019.06.059

    Article  CAS  PubMed  Google Scholar 

  30. Liu, J., Ma, R. T., Shi, Y. P. (2020). An immobilization enzyme for screening lipase inhibitors from Tibetan medicines. Journal of Chromatography A, 1615, 460711. https://doi.org/10.1016/j.chroma.2019.460711

  31. Chen, X., Xue, S., Lin, Y., Luo, J., & Kong, L. (2020). Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs. Analytica Chimica Acta, 1099, 94–102. https://doi.org/10.1016/j.aca.2019.11.042

    Article  CAS  PubMed  Google Scholar 

  32. Chen, W., Luo, H., Zhong, Z., Wei, J., Wang, Y. (2023). The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. Phytomedicine, 108, 154534. https://doi.org/10.1016/j.phymed.2022.154534

  33. Gao, Y., Liang, A., Fan, X., Hu, L., Hao, F., & Li, Y. (2019). Safety research in traditional chinese medicine: Methods, applications, and outlook. Engineering, 5, 76–82. https://doi.org/10.1016/j.eng.2018.11.019

    Article  CAS  Google Scholar 

  34. Tan, Y., & Chang, S. K. C. (2017). Digestive enzyme inhibition activity of the phenolic substances in selected fruits, vegetables and tea as compared to black legumes. Journal of Functional Foods, 38, 644–655. https://doi.org/10.1016/j.jff.2017.04.005

    Article  CAS  Google Scholar 

  35. Yan, T.-C., Yue, Z.-X., Gu, Y.-X., Zheng, H., Cao, J. (2022). Screening of lipase inhibitors in citrus fruits by electrophoretically - mediated microanalysis combined with molecular docking. Journal of Food Composition and Analysis, 105. https://doi.org/10.1016/j.jfca.2021.104185

  36. Zhuo, S., Wang, X., Li, L., Yang, S., & Ji, Y. (2021). Chiral carboxyl-functionalized covalent organic framework for enantioselective adsorption of amino acids. ACS Applied Materials & Interfaces, 13, 31059–31065. https://doi.org/10.1021/acsami.1c09238

    Article  CAS  Google Scholar 

  37. Zhong, Y., Yu, L., He, Q., Zhu, Q., Zhang, C., Cui, X., Zheng, J., & Zhao, S. (2019). Bifunctional hybrid enzyme-catalytic metal organic framework reactors for alpha-glucosidase inhibitor screening. ACS Applied Materials & Interfaces, 11, 32769–32777. https://doi.org/10.1021/acsami.9b11754

    Article  CAS  Google Scholar 

  38. Liu, Y. L., Zhao, X. J., Yang, X. X., & Li, Y. F. (2013). A nanosized metal-organic framework of Fe-MIL-88NH(2) as a novel peroxidase mimic used for colorimetric detection of glucose. The Analyst, 138, 4526–4531. https://doi.org/10.1039/c3an00560g

    Article  CAS  PubMed  Google Scholar 

  39. Zeng, F., Wu, W., Zhang, Y., Pan, X., & Duan, J. (2021). Rapid screening of lipase inhibitors in licorice extract by using porcine pancreatic lipase immobilized on Fe3O4 magnetic nanoparticles. Food & Function, 12, 5650–5657. https://doi.org/10.1039/d0fo03352a

    Article  CAS  Google Scholar 

  40. Li, P., Ma, X. H., Dong, Y. M., Jin, L., Chen, J. (2020). alpha-Glucosidase immobilization on polydopamine-coated cellulose filter paper and enzyme inhibitor screening. Analytical Biochemistry, 605, 113832. https://doi.org/10.1016/j.ab.2020.113832

  41. Sohrabi, N., Rasouli, N., & Torkzadeh, M. (2014). Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles. Chemical Engineering Journal, 240, 426–433. https://doi.org/10.1016/j.cej.2013.11.059

    Article  CAS  Google Scholar 

  42. Isik, C., Arabaci, G., IspirliDogac, Y., Deveci, I., & Teke, M. (2019). Synthesis and characterization of electrospun PVA/Zn(2+) metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Materials Science & Engineering, C: Materials for Biological Applications, 99, 1226–1235. https://doi.org/10.1016/j.msec.2019.02.031

    Article  CAS  Google Scholar 

  43. Sheelu, G., Kavitha, G., & Fadnavis, N. W. (2008). Efficient immobilization of lecitase in gelatin hydrogel and degumming of rice bran oil using a spinning basket reactor. Journal of the American Oil Chemists’ Society, 85, 739–748. https://doi.org/10.1007/s11746-008-1261-7

    Article  CAS  Google Scholar 

  44. Liu, D. M., Chen, J., & Shi, Y. P. (2017). alpha-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. International Journal of Biological Macromolecules, 105, 308–316. https://doi.org/10.1016/j.ijbiomac.2017.07.045

    Article  CAS  PubMed  Google Scholar 

  45. Wang, H., Zhao, X., Wang, S., Tao, S., Ai, N., & Wang, Y. (2015). Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures. Journal of Chromatography A, 1392, 20–27. https://doi.org/10.1016/j.chroma.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  46. Liu, J., Zhang, H. X., Shi, Y. P. (2021). Lipase immobilization on magnetic cellulose microspheres for rapid screening inhibitors from traditional herbal medicines. Talanta, 231, 122374. https://doi.org/10.1016/j.talanta.2021.122374

  47. Yang, X., Chen, Y., Yao, S., Qian, J., Guo, H., & Cai, X. (2019). Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydrate Polymers, 218, 324–332. https://doi.org/10.1016/j.carbpol.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  48. Xu, J., Cao, P., Fan, Z., Luo, X., Yang, G., Qu, T., Gao, J. (2022). Rapid screening of lipase inhibitors in Scutellaria baicalensis by using porcine pancreatic lipase immobilized on magnetic core-shell metal-organic frameworks. Molecules, 27. https://doi.org/10.3390/molecules27113475

  49. Fu, C., Jiang, Y., Guo, J., & Su, Z. (2016). Natural products with anti-obesity effects and different mechanisms of action. Journal of Agriculture and Food Chemistry, 64, 9571–9585. https://doi.org/10.1021/acs.jafc.6b04468

    Article  CAS  Google Scholar 

  50. Wan, L. H., Jiang, X. L., Liu, Y. M., Hu, J. J., Liang, J., & Liao, X. (2016). Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism. Analytical and Bioanalytical Chemistry, 408, 2275–2283. https://doi.org/10.1007/s00216-016-9320-7

    Article  CAS  PubMed  Google Scholar 

  51. Liou, C. J., Dai, Y. W., Wang, C. L., Fang, L. W., & Huang, W. C. (2019). Maslinic acid protects against obesity-induced nonalcoholic fatty liver disease in mice through regulation of the Sirt1/AMPK signaling pathway. The FASEB Journal, 33, 11791–11803. https://doi.org/10.1096/fj.201900413RRR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chamorro, M. F., Reiner, G., Theoduloz, C., Ladio, A., Schmeda-Hirschmann, G., Gomez-Alonso, S., Jimenez-Aspee, F. (2019). Polyphenol composition and (Bio)activity of berberis species and wild strawberry from the Argentinean Patagonia. Molecules, 24. https://doi.org/10.3390/molecules24183331

  53. Shi, D., Chen, C., Zhao, S., Ge, F., Liu, D., Song, H. (2014). Walnut polyphenols inhibit pancreatic lipase activity in vitro and have hypolipidemic effect on high-fat diet-induced obese mice. Journal of Food and Nutrition Research, 2, 757–763. https://doi.org/10.12691/jfnr-2-10-16

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BE2019717).

Author information

Authors and Affiliations

Authors

Contributions

Yibing Ji contributed to the conception of the study; Xue Liu completed the experiments, collected the data and wrote the manuscript; Jiaqi Wu helped provide the analysis with constructive discussions and check the paper; Shan Yang and Lingyu Li helped charting. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yibing Ji.

Ethics declarations

Competing Interests

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 580 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wu, J., Yang, S. et al. Carboxy-Functionalized Covalent Organic Framework as a Carrier for Lipase Immobilization and Its Application in Inhibitors Screening. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04725-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04725-1

Keywords

Navigation