Skip to main content
Log in

Investigation of Paracetamol Entrapped Nanoporous Silica Nanoparticles in Transdermal Drug Delivery System

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An effort was made to administer paracetamol drug through transdermal patch, as no such formulation of this drug has been developed yet. The primary cause for the lack of such formulations is paracetamol’s poor aqueous solubility. As a result, the current research concentrated on preparing nanomedicines, or drug-loaded nanoparticles, for delivery via transdermal formulations. Nanoparticles can improve the solubility of weakly aqueous soluble or even aqueous insoluble drugs by changing the crystalline structure of loaded medicines to an amorphous state and serving as drug permeation boosters. Silica nanoparticles (SNPs) were synthesized through sol-gel technique to achieve the aforementioned goal. DLS data revealed that the average particle size was around 100–200 nm, which was sufficient to penetrate the skin barrier. XRD analysis showed that the SNPs were amorphous, and the drug molecules lost their crystallinity after encapsulation into the nanoparticles, causing the enhancement of dissolution of drug molecules in physiological pH (pH—7.4). Different kinetic models were employed for the ex vivo dissolution data to evaluate the suitable kinetic model followed by the drug release in both burst and sustained phase. In vivo analgesic study was executed on mice applying each of the transdermal formulations to examine the performances of the patches.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Freo, U., Ruocco, C., Valerio, A., Scagnol, I., & Nisoli, E. (2021). Paracetamol: A review of guideline recommendations. Journal of Clinical Medicine. https://doi.org/10.3390/jcm10153420. MDPI.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sintov, A. C., Krymberk, I., Gavrilov, V., & Gorodischer, R. (2010). Transdermal delivery of paracetamol for paediatric use: Effects of vehicle formulations on the percutaneous penetration. Journal of Pharmacy and Pharmacology, 55(7), 911–919. https://doi.org/10.1211/0022357021486

    Article  CAS  Google Scholar 

  3. Mazaleuskaya, L. L., Sangkuhl, K., Thorn, C. F., Fitzgerald, G. A., Altman, R. B., & Klein, T. E. (2015). PharmGKB summary: Pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenetics and Genomics, 25(8), 416–426. https://doi.org/10.1097/FPC.0000000000000150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cederbaum, A. I. (2015). Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications. Redox Biology, 4, 60–73. https://doi.org/10.1016/j.redox.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  5. Yoon, E., Babar, A., Choudhary, M., Kutner, M., & Pyrsopoulos, N. (2016). Acetaminophen-induced hepatotoxicity: A comprehensive update. Journal of Clinical and Translational Hepatology, 4(2), 131–142. https://doi.org/10.14218/JCTH.2015.00052

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ben-Shachar, R., Chen, Y., Luo, S., Hartman, C., Reed, M., & Nijhout, H. F. (2012). The biochemistry of acetaminophen hepatotoxicity and rescue: A mathematical model. Theoretical Biology and Medical Modelling, 9(1). https://doi.org/10.1186/1742-4682-9-55

  7. Hajebrahimi, S., & Roosta, A. (2020). Solubility of acetaminophen in aqueous solutions of three natural deep eutectic solvents (NADESs) and individual components of the NADESs. Journal of Molecular Liquids, 316, 113867. https://doi.org/10.1016/j.molliq.2020.113867

    Article  CAS  Google Scholar 

  8. Jeong, W. Y., Kwon, M., Choi, H. E., & Kim, K. S. (2021). Recent advances in transdermal drug delivery systems: A review. Biomaterials Research. https://doi.org/10.1186/s40824-021-00226-6. BioMed Central Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hmingthansanga, V., Singh, N., Banerjee, S., Manickam, S., Velayutham, R., & Natesan, S. (2022). Improved topical drug delivery: Role of permeation enhancers and advanced approaches. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14122818. MDPI.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jyoti Sen, D., & Patel, J. G. (2016). Logarithmic partition coefficient comparison study and molecular weight of synthesized prodrugs of ibuprofen+paracetamol, diclofenac sodium+paracetamol and ibuprofen+diclofenac sodium. American Journal of Advanced Drug Delivery, 04(05), 1–5. https://doi.org/10.21767/2321-547x.1000003

    Article  Google Scholar 

  11. Gunasekaran, T., Haile, T., Nigusse, T., & Dhanaraju, M. D. (2014). Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pacific Journal of Tropical Biomedicine. https://doi.org/10.12980/APJTB.4.2014C980. Asian Pacific Tropical Biomedicine Press.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Agrawal, Y., & Patel, V. (2011). Nanosuspension: An approach to enhance solubility of drugs. Journal of Advanced Pharmaceutical Technology & Research, 2(2), 81. https://doi.org/10.4103/2231-4040.82950

    Article  CAS  Google Scholar 

  13. Sareen, S., Joseph, L., & Mathew, G. (2012). Improvement in solubility of poor water-soluble drugs by solid dispersion. International Journal of Pharmaceutical Investigation, 2(1), 12. https://doi.org/10.4103/2230-973x.96921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naik, D. R., & Raval, J. P. (2016). Amorphous polymeric binary blend pH-responsive nanoparticles for dissolution enhancement of antiviral drug. Journal of Saudi Chemical Society, 20, S168–S177. https://doi.org/10.1016/j.jscs.2012.09.020

    Article  CAS  Google Scholar 

  15. Bharti, C., Gulati, N., Nagaich, U., & Pal, A. (2015). Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 5(3), 124. https://doi.org/10.4103/2230-973x.160844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roggers, R., Kanvinde, S., Boonsith, S., & Oupický, D. (2014). The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. An Official Journal of the American Association of Pharmaceutical Scientists, 15(5), 1163–1171. https://doi.org/10.1208/s12249-014-0142-7

    Article  CAS  Google Scholar 

  17. Kwon, S., Singh, R. K., Perez, R. A., Neel, E. A. A., Kim, H. W., & Chrzanowski, W. (2013). Silica-based mesoporous nanoparticles for controlled drug delivery. Journal of Tissue Engineering, 4(1), 1–18. https://doi.org/10.1177/2041731413503357

    Article  CAS  Google Scholar 

  18. Lademann, J., Patzelt, A., Richter, H., Antoniou, C., Sterry, W., & Knorr, F. (2009). Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. Journal of Biomedical Optics, 14(2), 021014. https://doi.org/10.1117/1.3078813

    Article  CAS  PubMed  Google Scholar 

  19. Nafisi, S., Schäfer-Korting, M., & Maibach, H. I. (2015). Perspectives on percutaneous penetration: Silica nanoparticles. Nanotoxicology, 9(5), 643–657. https://doi.org/10.3109/17435390.2014.958115

    Article  CAS  PubMed  Google Scholar 

  20. Akram, M. W., Jamshaid, H., Rehman, F. U., Zaeem, M., Khan, J. zeb, & Zeb, A. (2022). Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech, 23(1). https://doi.org/10.1208/s12249-021-02166-9

  21. Chakraborty, S., Biswas, S., Sa, B., Das, S., & Dey, R. (2014). In vitro & in vivo correlation of release behavior of andrographolide from silica and PEG assisted silica gel matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 455(1), 111–121. https://doi.org/10.1016/j.colsurfa.2014.04.046

    Article  CAS  Google Scholar 

  22. de Kumar, P., Mallick, S., Mukherjee, B., Sengupta, S., Pattnaik, S., & Chakraborty, S. (2011). Optimization of in-vitro permeation pattern of ketorolac tromethamine transdermal patches. Iranian Journal of Pharmaceutical Research, 10(2), 193–201. https://doi.org/10.22037/ijpr.2011.927

    Article  Google Scholar 

  23. Banerjee, S., Chattopadhyay, P., Ghosh, A., Pathak, M. P., Singh, S., & Veer, V. (2013). Acute dermal irritation, sensitization, and acute toxicity studies of a transdermal patch for prophylaxis against ({+/-}) anatoxin-a poisoning. International Journal of Toxicology, 32(4), 308–313. https://doi.org/10.1177/1091581813489996

    Article  CAS  PubMed  Google Scholar 

  24. Jha, J., Chakraborty, S., Chaudhuri, M. G., & Dey, R. (2016). In vitro release kinetics and transferrin saturation study of intravenous iron sucrose entrapped in poly(ethylene glycol)-assisted silica xerogel. Applied Biochemistry and Biotechnology, 178(7), 1351–1362. https://doi.org/10.1007/s12010-015-1951-1

    Article  CAS  PubMed  Google Scholar 

  25. Fan, S.-H., Ali, N. A., & Basri, D. F. (2014). Evaluation of analgesic activity of the methanol extract from the galls of Quercus infectoria (Olivier) in rats. Evidence-Based Complementary and Alternative Medicine, 2014, 976764. https://doi.org/10.1155/2014/976764

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lambers, H., Piessens, S., Bloem, A., Pronk, H., & Finkel, P. (2006). Natural skin surface pH is on average below 5, which is beneficial for its resident flora. International Journal of Cosmetic Science, 28(5), 359–370. https://doi.org/10.1111/j.1467-2494.2006.00344.x

  27. Esposito, S. (2019). “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials (Basel), 1–25. https://doi.org/10.3390/ma12040668

  28. Chanda, A. (2015). Evaluation and isolation of novel binding agent Alstonia evaluation and isolation of novel binding agent. World Journal of Pharmacy and Pharmaceutical Sciences, 4(04), 1247–1258.

    Google Scholar 

  29. Paul, D. R. (2011). Elaborations on the Higuchi model for drug delivery. International Journal of Pharmaceutics, 418(1), 13–17. https://doi.org/10.1016/j.ijpharm.2010.10.037

    Article  CAS  PubMed  Google Scholar 

  30. Solanki, D., & Motiwale, M. (2020). Studies on drug release kinetics and mechanism from sustained release matrix tablets of isoniazid using natural polymer obtained from Dioscorea alata. International Journal of ChemTech Research, 13(3), 166–173. https://doi.org/10.20902/ijctr.2019.130313

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Department of Higher Education, Science & Technology and Biotechnology, Government of West Bengal (File no: ST/P/S&T/6G-32/2017).

Author information

Authors and Affiliations

Authors

Contributions

Sourav Adhikary: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft. Ashique Al Hoque: conceptualization, methodology, writing—review and editing. Manisheeta Ray: visualization, validation. Swastik Paul: investigation, validation. Akbar Hossain: data analysis. Subrata Goswami: resources, supervision. Rajib Dey: project administration, resources, supervision.

Corresponding author

Correspondence to Sourav Adhikary.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikary, S., Al Hoque, A., Ray, M. et al. Investigation of Paracetamol Entrapped Nanoporous Silica Nanoparticles in Transdermal Drug Delivery System. Appl Biochem Biotechnol 195, 4712–4727 (2023). https://doi.org/10.1007/s12010-023-04576-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04576-w

Keywords

Navigation