Skip to main content

Advertisement

Log in

Impact of Acetic Acid Supplementation in Polyhydroxyalkanoates Production by Cupriavidus necator Using Mixture-Process Design and Artificial Neural Network

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The trend in bioplastic application has increased over the years where polyhydroxyalkanoates (PHAs) have emerged as a potential candidate with the advantage of being bio-origin, biodegradable, and biocompatible. The present study aims to understand the effect of acetic acid concentration (in combination with sucrose) as a mixture variable and its time of addition (process variable) on PHA production by Cupriavidus necator. The addition of acetic acid at a concentration of 1 g l−1 showed a positive influence on biomass and PHA yield; however, the further increase had a reversal effect. The addition of acetic acid at the time of incubation showed a higher PHA yield, whereas maximum biomass was achieved when acetic acid was added after 48 h. Genetic algorithm (GA) optimized artificial neural network (ANN) was used to model PHA concentration from mixture-process design data. Fitness of the GA-ANN model (R2: 0.935) was superior when compared to the polynomial model (R2: 0.301) from mixture design. Optimization of the ANN model projected 2.691 g l−1 PHA from 7.245 g l−1 acetic acid, 12.756 g l−1 sucrose, and the addition of acetic acid at the time of incubation. Sensitivity analysis indicates the inhibitory effect of all the predictors at higher levels. ANN model can be further used to optimize the variables while extending the bioprocess to fed-batch operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Kumar, R., Verma, A., Shome, A., et al. (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability, 13(17), 9963. https://doi.org/10.3390/su13179963

    Article  CAS  Google Scholar 

  2. Lhamo, P., Behera, S. K., & Mahanty, B. (2021). Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production – A state-of-the art review. Biotechnology Journal, 16(9), 2100136. https://doi.org/10.1002/biot.202100136

    Article  CAS  Google Scholar 

  3. Pandey, A., Adama, N., Adjallé, K., & Blais, J. F. (2022). Sustainable applications of polyhydroxyalkanoates in various fields: A critical review. International Journal of Biological Macromolecules, 221, 1184–1201. https://doi.org/10.1016/j.ijbiomac.2022.09.098

    Article  CAS  PubMed  Google Scholar 

  4. Luo, Z., Wu, Y., Li, Z., & Loh, X. J. (2019). Recent progress in polyhydroxyalkanoates-based copolymers for biomedical applications. Biotechnology Journal, 14(12), 1900283. https://doi.org/10.1002/biot.201900283

    Article  CAS  Google Scholar 

  5. Kaniuk, Ł, & Stachewicz, U. (2021). Development and advantages of biodegradable pha polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomaterials Science & Engineering, 7(12), 5339–5362. https://doi.org/10.1021/acsbiomaterials.1c00757

    Article  CAS  Google Scholar 

  6. Tan, D., Wang, Y., Tong, Y., & Chen, G.-Q. (2021). Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 39(9), 953–963. https://doi.org/10.1016/j.tibtech.2020.11.010

    Article  CAS  PubMed  Google Scholar 

  7. Mezzolla, V., D’Urso, O., & Poltronieri, P. (2018). Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymers, 10(8), 910. https://doi.org/10.3390/polym10080910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kingsly, J. S., Chathalingath, N., Parthiban, S. A., et al. (2022). Utilization of sugarcane molasses as the main carbon source for the production of polyhydroxyalkanoates from Enterobacter cloacae. Energy Nexus, 6, 100071. https://doi.org/10.1016/j.nexus.2022.100071

    Article  CAS  Google Scholar 

  9. Ratnaningrum, D., Saraswaty, V., Priatni, S., Lisdiyanti, P., Purnomo, A., & Pudjiraharti, S. (2019). Screening of polyhydroxyalkanoates (PHA)-producing bacteria from soil bacteria strains. IOP Conference Series: Earth and Environmental Science, 277(1), 012003. https://doi.org/10.1088/1755-1315/277/1/012003

    Article  Google Scholar 

  10. Sathya, A. B., Sivasubramanian, V., Santhiagu, A., Sebastian, C., & Sivashankar, R. (2018). Production of polyhydroxyalkanoates from renewable sources using bacteria. Journal of Polymers and the Environment, 26(9), 3995–4012. https://doi.org/10.1007/s10924-018-1259-7

    Article  CAS  Google Scholar 

  11. Gottardo, M., Bolzonella, D., Adele Tuci, G., Valentino, F., Majone, M., Pavan, P., & Battista, F. (2022). Producing volatile fatty acids and polyhydroxyalkanoates from foods by-products and waste: A review. Bioresource Technology, 361, 127716. https://doi.org/10.1016/j.biortech.2022.127716

    Article  CAS  PubMed  Google Scholar 

  12. Szacherska, K., Oleskowicz-Popiel, P., Ciesielski, S., & Mozejko-Ciesielska, J. (2021). Volatile fatty acids as carbon sources for polyhydroxyalkanoates production. Polymers, 13(3), 321. https://doi.org/10.3390/polym13030321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, S., Ding, Y., Liu, M., Xian, M., & Zhao, G. (2020). Comparison of glucose, acetate and ethanol as carbon resource for production of poly(3-Hydroxybutyrate) and other acetyl-CoA derivatives. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00833

  14. Vu, D. H., Wainaina, S., Taherzadeh, M. J., Åkesson, D., & Ferreira, J. A. (2021). Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered, 12(1), 2480–2498. https://doi.org/10.1080/21655979.2021.1935524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, M.-R., Li, H.-F., Yi, J.-J., Tao, S.-Y., & Li, Z.-J. (2022). Production of polyhydroxyalkanoates by three novel species of Marinobacterium. International Journal of Biological Macromolecules, 195, 255–263. https://doi.org/10.1016/j.ijbiomac.2021.12.019

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bravo-Porras, G., Fernández-Güelfo, L. A., Álvarez-Gallego, C. J., Carbú, M., Sales, D., & Romero-García, L. I. (2021). Influence of the total concentration and the profile of volatile fatty acids on polyhydroxyalkanoates (PHA) production by mixed microbial cultures. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02208-z

    Article  Google Scholar 

  17. Szacherska, K., Moraczewski, K., Rytlewski, P., Czaplicki, S., Ciesielski, S., Oleskowicz-Popiel, P., & Mozejko-Ciesielska, J. (2022). Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis. Scientific Reports, 12(1), 7263. https://doi.org/10.1038/s41598-022-11114-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reddy, M. V., Watanabe, A., Onodera, R., et al. (2020). Polyhydroxyalkanoates (PHA) production using single or mixture of fatty acids with Bacillus sp. CYR1: Identification of PHA synthesis genes. Bioresource Technology Reports, 11, 100483. https://doi.org/10.1016/j.biteb.2020.100483

  19. Marudkla, J., Lee, W.-C., Wannawilai, S., Chisti, Y., & Sirisansaneeyakul, S. (2018). Model of acetic acid-affected growth and poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545. Journal of Biotechnology, 268, 12–20. https://doi.org/10.1016/j.jbiotec.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  20. Munir, S., & Jamil, N. (2018). Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source. Journal of Basic Microbiology, 58(3), 247–254. https://doi.org/10.1002/jobm.201700276

    Article  CAS  PubMed  Google Scholar 

  21. Fradinho, J. C., Oehmen, A., & Reis, M. A. M. (2019). Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions. International Journal of Biological Macromolecules, 126, 1085–1092. https://doi.org/10.1016/j.ijbiomac.2018.12.270

    Article  PubMed  Google Scholar 

  22. Catherine, M.-C., Guwy, A., & Massanet-Nicolau, J. (2022). Effect of acetate concentration, temperature, pH and nutrient concentration on polyhydroxyalkanoates (PHA) production by glycogen accumulating organisms. Bioresource Technology Reports, 20, 101226. https://doi.org/10.1016/j.biteb.2022.101226

    Article  CAS  Google Scholar 

  23. Almeida, P. Z., Messias, J. M., Pereira, M. G., et al. (2018). Mixture design of starchy substrates hydrolysis by an immobilized glucoamylase from Aspergillus brasiliensis. Biocatalysis and Biotransformation, 36(5), 389–395. https://doi.org/10.1080/10242422.2017.1423059

    Article  CAS  Google Scholar 

  24. Shahid, S., Corroler, D., Mosrati, R., et al. (2021). Optimization of growth conditions for the biosynthesis of medium-chain length polyhydroxyalkanoates from Bacillus megaterium DSM 509: Experimental analysis, statistical modelling, and characterization. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01986-w

    Article  Google Scholar 

  25. Pan, W., Nomura, C. T., & Nakas, J. P. (2012). Estimation of inhibitory effects of hemicellulosic wood hydrolysate inhibitors on PHA production by Burkholderia cepacia ATCC 17759 using response surface methodology. Bioresource Technology, 125, 275–282. https://doi.org/10.1016/j.biortech.2012.08.107

    Article  CAS  PubMed  Google Scholar 

  26. Dietrich, K., Dumont, M.-J., Schwinghamer, T., Orsat, V., & Del Rio, L. F. (2018). Model study to assess softwood hemicellulose hydrolysates as the carbon source for PHB production in Paraburkholderia sacchari IPT 101. Biomacromolecules, 19(1), 188–200. https://doi.org/10.1021/acs.biomac.7b01446

    Article  CAS  PubMed  Google Scholar 

  27. Bezerra, M. A., Lemos, V. A., Novaes, C. G., de Jesus, R. M., Filho, H. R. S., Araújo, S. A., & Alves, J. P. S. (2020). Application of mixture design in analytical chemistry. Microchemical Journal, 152, 104336. https://doi.org/10.1016/j.microc.2019.104336

    Article  CAS  Google Scholar 

  28. Li, M., Eskridge, K. M., & Wilkins, M. R. (2019). Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C: N ratio). Bioprocess and Biosystems Engineering, 42(9), 1495–1506. https://doi.org/10.1007/s00449-019-02146-1

    Article  CAS  PubMed  Google Scholar 

  29. Bhuva, P., & Bhogayata, A. (2022). A review on the application of artificial intelligence in the mix design optimization and development of self-compacting concrete. Materials Today: Proceedings, 65, 603–608. https://doi.org/10.1016/j.matpr.2022.03.194

    Article  CAS  Google Scholar 

  30. Bose, S. A., Rajulapati, S. B., Velmurugan, S., Arockiasamy, S., Jayaram, K., Kola, A. K., & Raja, S. (2023). Process intensification of biopolymer polyhydroxybutyrate production by Pseudomonas putida SS9: A statistical approach. Chemosphere, 313, 137350. https://doi.org/10.1016/j.chemosphere.2022.137350

    Article  CAS  PubMed  Google Scholar 

  31. Yu, H.-C., Huang, S.-M., Lin, W.-M., Kuo, C.-H., & Shieh, C.-J. (2019). Comparison of artificial neural networks and response surface methodology towards an efficient ultrasound-assisted extraction of chlorogenic acid from Lonicera japonica. Molecules, 24(12), 2304. https://doi.org/10.3390/molecules24122304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tantoco, C.J.A., Requiso, P.J., Alfafara, C.G., Capunitan, J.A., Nayve Jr., F.R.P., & Ventura, J.-R. S. (2023). Response surface methodology and artificial neural network optimization and modeling of the saccharification and fermentation conditions of the polyhydroxybutyrate from corn stover. Philippine Journal of Science, 152(1), 357–374.

  33. Zafar, M., Kumar, S., Kumar, S., & Dhiman, A. K. (2012). Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology. Biocatalysis and Agricultural Biotechnology, 1(1), 70–79. https://doi.org/10.1016/j.bcab.2011.08.012

    Article  CAS  Google Scholar 

  34. Gupta, T. K., & Raza, K. (2019). Optimization of ANN architecture: A review on nature-inspired techniques. In Machine Learning in Bio-Signal Analysis and Diagnostic Imaging (pp. 159–182). Elsevier. https://doi.org/10.1016/B978-0-12-816086-2.00007-2

  35. Zhang, L., Han, X., Yuan, B., Zhang, A., Feng, J., & Zhang, J. (2021). Mechanism of purification of low-pollution river water using a modified biological contact oxidation process and artificial neural network modeling. Journal of Environmental Chemical Engineering, 9(2), 104832. https://doi.org/10.1016/j.jece.2020.104832

    Article  CAS  Google Scholar 

  36. Rebocho, A. T., Pereira, J. R., Neves, L. A., et al. (2020). Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp waste. Bioengineering, 7(2), 34. https://doi.org/10.3390/bioengineering7020034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiao, D., Shi, C., Yuan, Q., An, X., & Liu, Y. (2018). Mixture design of concrete using simplex centroid design method. Cement and Concrete Composites, 89, 76–88. https://doi.org/10.1016/j.cemconcomp.2018.03.001

    Article  CAS  Google Scholar 

  38. Pradhan, U. K., Lal, K., Dash, S., & Singh, K. N. (2017). Design and analysis of mixture experiments with process variable. Communications in Statistics - Theory and Methods, 46(1), 259–270. https://doi.org/10.1080/03610926.2014.990104

    Article  MathSciNet  Google Scholar 

  39. Erzurum Cicek, Z. I., & Kamisli Ozturk, Z. (2021). Optimizing the artificial neural network parameters using a biased random key genetic algorithm for time series forecasting. Applied Soft Computing, 102, 107091. https://doi.org/10.1016/j.asoc.2021.107091

    Article  Google Scholar 

  40. Haldar, D., Shabbirahmed, A. M. A. M., & Mahanty, B. (2023). Multivariate regression and artificial neural network modelling of sugar yields from acid pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Bioresource Technology, 370, 128519. https://doi.org/10.1016/j.biortech.2022.128519

    Article  CAS  PubMed  Google Scholar 

  41. Moodley, P., Rorke, D. C. S., & Gueguim Kana, E. B. (2019). Development of artificial neural network tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass. Bioresource Technology, 273, 682–686. https://doi.org/10.1016/j.biortech.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  42. Chung, W. J., & Liu, C. (2022). Analysis of input parameters for deep learning-based load prediction for office buildings in different climate zones using explainable artificial intelligence. Energy and Buildings, 276, 112521. https://doi.org/10.1016/j.enbuild.2022.112521

    Article  Google Scholar 

  43. Tsoka, T., Ye, X., Chen, Y., Gong, D., & Xia, X. (2022). Explainable artificial intelligence for building energy performance certificate labelling classification. Journal of Cleaner Production, 355, 131626. https://doi.org/10.1016/j.jclepro.2022.131626

    Article  Google Scholar 

  44. Yu, X., Ergan, S., & Dedemen, G. (2019). A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption. Applied Energy, 253, 113497. https://doi.org/10.1016/j.apenergy.2019.113497

    Article  Google Scholar 

  45. Lhamo, P., & Mahanty, B. (2022). Multiple bioanalytical method based residual biomass prediction in microbial culture using multivariate regression and artificial neural network. Chemometrics and Intelligent Laboratory Systems, 231, 104687. https://doi.org/10.1016/j.chemolab.2022.104687

    Article  CAS  Google Scholar 

  46. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  47. Jain, A., Jain, R., & Jain, S. (2020). Quantitative analysis of reducing sugars by 3, 5-dinitrosalicylic acid (DNSA method). In Basic techniques in biochemistry, microbiology and molecular biology (pp. 181–183). Humana Press. https://doi.org/10.1007/978-1-4939-9861-6_43

  48. Langenfeld, N. J., Payne, L. E., & Bugbee, B. (2021). Colorimetric determination of urea using diacetyl monoxime with strong acids. PLOS ONE, 16(11), e0259760. https://doi.org/10.1371/journal.pone.0259760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pradhan, S., Dikshit, P. K., & Moholkar, V. S. (2018). Production, ultrasonic extraction, and characterization of poly (3-hydroxybutyrate) (PHB) using Bacillus megaterium and Cupriavidus necator. Polymers for Advanced Technologies, 29(8), 2392–2400. https://doi.org/10.1002/pat.4351

    Article  CAS  Google Scholar 

  50. Cristea, A., Baricz, A., Leopold, N., et al. (2018). Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania). Journal of Applied Microbiology, 125(5), 1343–1357. https://doi.org/10.1111/jam.14029

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Gonzalez, L., & De Wever, H. (2018). Acetic acid as an indirect sink of CO2 for the synthesis of polyhydroxyalkanoates (PHA): Comparison with PHA production processes directly using CO2 as feedstock. Applied Sciences, 8(9), 1416. https://doi.org/10.3390/app8091416

    Article  CAS  Google Scholar 

  52. Venkata Mohan, S., & Venkateswar Reddy, M. (2013). Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology. Bioresource Technology, 128, 409–416. https://doi.org/10.1016/j.biortech.2012.10.037

    Article  CAS  PubMed  Google Scholar 

  53. Al Battashi, H., Al-Kindi, S., Gupta, V. K., & Sivakumar, N. (2021). Polyhydroxyalkanoate (PHA) production using volatile fatty acids derived from the anaerobic digestion of waste paper. Journal of Polymers and the Environment, 29(1), 250–259. https://doi.org/10.1007/s10924-020-01870-0

    Article  CAS  Google Scholar 

  54. Yang, S., Li, S., & Jia, X. (2019). Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440. Journal of Industrial Microbiology and Biotechnology, 46(6), 793–800. https://doi.org/10.1007/s10295-019-02159-5

    Article  CAS  PubMed  Google Scholar 

  55. Poontawee, & Limtong. (2020). Feeding strategies of two-stage fed-batch cultivation processes for microbial lipid production from sugarcane top hydrolysate and crude glycerol by the oleaginous red yeast Rhodosporidiobolus fluvialis. Microorganisms, 8(2), 151. https://doi.org/10.3390/microorganisms8020151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kacanski, M., Pucher, L., Peral, C., Dietrich, T., & Neureiter, M. (2022). Cell retention as a viable strategy for PHA production from diluted VFAs with Bacillus megaterium. Bioengineering, 9(3), 122. https://doi.org/10.3390/bioengineering9030122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kokkonen, P., Beier, A., Mazurenko, S., Damborsky, J., Bednar, D., & Prokop, Z. (2021). Substrate inhibition by the blockage of product release and its control by tunnel engineering. RSC Chemical Biology, 2(2), 645–655. https://doi.org/10.1039/D0CB00171F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Białek, J., Bujalski, W., Wojdan, K., Guzek, M., & Kurek, T. (2022). Dataset level explanation of heat demand forecasting ANN with SHAP. Energy, 261, 125075. https://doi.org/10.1016/j.energy.2022.125075

    Article  Google Scholar 

  59. Vu, D. H., Mahboubi, A., Root, A., Heinmaa, I., Taherzadeh, M. J., & Åkesson, D. (2022). Thorough investigation of the effects of cultivation factors on polyhydroalkanoates (PHAs) production by Cupriavidus necator from food waste-derived volatile fatty acids. Fermentation, 8(11), 605. https://doi.org/10.3390/fermentation8110605

    Article  CAS  Google Scholar 

  60. Ling, C., Qiao, G. Q., Shuai, B. W., Olavarria, K., Yin, J., Xiang, R. J., … Chen, G. Q. (2018). Engineering NADH/NAD + ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metabolic Engineering, 49, 275–286. https://doi.org/10.1016/j.ymben.2018.09.007

  61. Kedia, G., Passanha, P., Dinsdale, R. M., Guwy, A. J., & Esteves, S. R. (2014). Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator. Biotechnology and Bioprocess Engineering, 19(6), 989–995. https://doi.org/10.1007/s12257-014-0144-z

    Article  CAS  Google Scholar 

  62. Wang, J., Liu, S., Huang, J., Cui, R., Xu, Y., & Song, Z. (2023). Genetic engineering strategies for sustainable polyhydroxyalkanoate (PHA) production from carbon-rich wastes. Environmental Technology & Innovation, 30, 103069. https://doi.org/10.1016/j.eti.2023.103069

    Article  CAS  Google Scholar 

  63. Chen, H., Meng, H., Nie, Z., & Zhang, M. (2013). Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes. Bioresource Technology, 128, 533–538. https://doi.org/10.1016/j.biortech.2012.10.121

    Article  CAS  PubMed  Google Scholar 

  64. Valentino, F., Beccari, M., Fraraccio, S., Zanaroli, G., & Majone, M. (2014). Feed frequency in a sequencing batch reactor strongly affects the production of polyhydroxyalkanoates (PHAs) from volatile fatty acids. New Biotechnology, 31(4), 264–275. https://doi.org/10.1016/j.nbt.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  65. Chakraborty, P., Gibbons, W., & Muthukumarappan, K. (2009). Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha. Journal of Applied Microbiology, 106(6), 1996–2005. https://doi.org/10.1111/j.1365-2672.2009.04158.x

    Article  CAS  PubMed  Google Scholar 

  66. Korkakaki, E., Mulders, M., Veeken, A., Rozendal, R., van Loosdrecht, M. C. M., & Kleerebezem, R. (2016). PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix. Water Research, 96, 74–83. https://doi.org/10.1016/j.watres.2016.03.033

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, L., Bao, M., Zhao, D., & Li, F. (2021). Correlation between polyhydroxyalkanoates and extracellular polymeric substances in the activated sludge biosystems with different carbon to nitrogen ratio. Biochemical Engineering Journal, 176, 108204. https://doi.org/10.1016/j.bej.2021.108204

    Article  CAS  Google Scholar 

  68. Pokój, T., Klimiuk, E., & Ciesielski, S. (2019). Interactive effect of crude glycerin concentration and C: N ratio on polyhydroxyalkanoates accumulation by mixed microbial cultures modelled with response surface methodology. Water Research, 156, 434–444. https://doi.org/10.1016/j.watres.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  69. Chavan, S., Yadav, B., Tyagi, R. D., & Drogui, P. (2021). A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Bioresource Technology, 341, 125900. https://doi.org/10.1016/j.biortech.2021.125900

    Article  CAS  PubMed  Google Scholar 

  70. Pagliano, G., Galletti, P., Samorì, C., Zaghini, A., & Torri, C. (2021). Recovery of polyhydroxyalkanoates from single and mixed microbial cultures: A review. Frontiers in Bioengineering and Biotechnology, 9, 624021. https://doi.org/10.3389/fbioe.2021.624021

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rodriguez-Perez, S., Serrano, A., Pantión, A. A., & Alonso-Fariñas, B. (2018). Challenges of scaling-up PHA production from waste streams. A review. Journal of Environmental Management, 205, 215–230. https://doi.org/10.1016/j.jenvman.2017.09.083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PL and BM acknowledge the support from the Karunya Institute of Technology and Sciences. Standard ethical and professional conduct has been followed.

Author information

Authors and Affiliations

Authors

Contributions

Pema Lhamo contributed to conceptualization-supporting, formal analysis-equal, visualization-lead, writing—original draft-lead, writing—review and editing-equal. Biswanath Mahanty contributed to conceptualization-lead, project administration-lead, supervision-lead, writing—original draft-supporting, writing—review and editing-equal.

Corresponding author

Correspondence to Biswanath Mahanty.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 168 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lhamo, P., Mahanty, B. Impact of Acetic Acid Supplementation in Polyhydroxyalkanoates Production by Cupriavidus necator Using Mixture-Process Design and Artificial Neural Network. Appl Biochem Biotechnol 196, 1155–1174 (2024). https://doi.org/10.1007/s12010-023-04567-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04567-x

Keywords

Navigation