Skip to main content

Advertisement

Log in

Luteolin Mitigates Diabetic Dyslipidemia in Rats by Modulating ACAT-2, PPARα, SREBP-2 Proteins, and Oxidative Stress

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetic dyslipidemia is a crucial link between type-2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular diseases (ASCVD). Natural biologically active substances have been advocated as complementary remedies for ASCVD and T2DM. Luteolin, a flavonoid, exhibits antioxidant, hypolipidemic, and antiatherogenic effects. Hence, we aimed to determine influence of luteolin on lipid homeostasis and hepatic damage in rats with T2DM induced by high-fat-diet (HFD) and streptozotocin (STZ). After being fed HFD for 10 days, male Wistar rats received 40 mg/kg STZ intraperitoneal injection on 11th day. Seventy-two hours later, hyperglycemic rats (fasting glucose > 200 mg/dL) were randomized into groups, and oral hydroxy-propyl-cellulose, atorvastatin (5 mg/kg), or luteolin (50 mg/kg or 100 mg/kg) administered daily, while continuing HFD for 28 days. Luteolin significantly ameliorated dyslipidemia levels and concomitantly improved atherogenic index of plasma in a dose-dependent manner. Increased levels of malondialdehyde and diminished levels of superoxide dismutase, catalase, and glutathione in HFD-STZ-diabetic rats were significantly regulated by luteolin. Luteolin significantly intensified PPARα expression while decreasing expression of acyl-coenzyme A:cholesterol acyltransferase-2 (ACAT-2) and sterol regulatory element binding protein-2 (SREBP-2) proteins. Moreover, luteolin effectively alleviated hepatic impairment in HFD-STZ-diabetic rats to near-normal control levels. The findings of the present study expound mechanisms by which luteolin mitigated diabetic dyslipidemia and alleviated hepatic impairment in HFD-STZ-diabetic rats by amelioration of oxidative stress, modulation of PPARα expression, and downregulation of ACAT-2 and SREBP-2. In conclusion, our results imply that luteolin may be efficacious in management of dyslipidemia in T2DM, and future research may be essential to substantiate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. World Health Organization (WHO). (2021). Cardiovascular diseases: Fact sheet No. 317 from http://www.who.int/mediacentre/factsheets/fs317/en/ . Accessed  30 Oct 2022.

  2. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  3. McFarlane, S. I., Banerji, M., & Sowers, J. R. (2001). Insulin resistance and cardiovascular disease. The Journal of Clinical Endocrinology & Metabolism, 86(2), 713–718. https://doi.org/10.1210/JCEM.86.2.7202

    Article  CAS  Google Scholar 

  4. Tangvarasittichai, S. (2015). Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes, 6(3), 456. https://doi.org/10.4239/wjd.v6.i3.456

    Article  PubMed  PubMed Central  Google Scholar 

  5. Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316–328. https://doi.org/10.1016/j.numecd.2005.05.003

    Article  PubMed  Google Scholar 

  6. Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317–325. https://doi.org/10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  7. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

  8. Yu, X. H., Zheng, X. L., & Tang, C. K. (2015). Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis in advances in clinical chemistry (1st ed., Vol. 71, pp. 171–203). Elsevier Inc. https://doi.org/10.1016/bs.acc.2015.06.005

  9. Eberlé, D., Hegarty, B., Bossard, P., Ferré, P., & Foufelle, F. (2004). SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie, 86(11), 839–848. https://doi.org/10.1016/j.biochi.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  10. Hai, Q., & Smith, J. D. (2021). Acyl-coenzyme a: Cholesterol acyltransferase (acat) in cholesterol metabolism: From its discovery to clinical trials and the genomics era. Metabolites, 11(8), 543. https://doi.org/10.3390/metabo11080543

  11. Hori, M., Satoh, M., Furukawa, K., Sakamoto, Y. I., Hakamata, H., Komohara, Y., & Horiuchi, S. (2004). Acyl-coenzyme A:cholesterol acyltransferase-2 (ACAT-2) is responsible for elevated intestinal ACAT activity in diabetic rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(9), 1689–1695. https://doi.org/10.1161/01.ATV.0000137976.88533.13

    Article  CAS  PubMed  Google Scholar 

  12. Newman, D., & Cragg, G. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Z., Zeng, M., Wang, Z., Qin, F., Chen, J., & He, Z. (2021). Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism. Journal of Agricultural and Food Chemistry, 69(5), 1441–1454. https://doi.org/10.1021/acs.jafc.0c08085

    Article  CAS  PubMed  Google Scholar 

  14. Luo, Y., Shang, P., & Li, D. (2017). Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Frontiers in Pharmacology, 8(OCT), 1–10. https://doi.org/10.3389/fphar.2017.00692

  15. Seelinger, G., Merfort, I., & Schempp, C. M. (2008). Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Medica, 74(14), 1667–1677. https://doi.org/10.1055/s-0028-1088314

    Article  CAS  PubMed  Google Scholar 

  16. Wang, G., Li, W., Lu, X., Bao, P., & Zhao, X. (2012). Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. Journal of Diabetes and its Complications, 26(4), 259–265. https://doi.org/10.1016/j.jdiacomp.2012.04.007

    Article  PubMed  Google Scholar 

  17. Wang, G. G., Lu, X. H., Li, W., Zhao, X., & Zhang, C. (2011). Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evidence based Complementary and Alternative Medicine, 2011, 323171. https://doi.org/10.1155/2011/323171

  18. Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., ... & Liang, G. (2019). Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine, 59, 152774. https://doi.org/10.1016/j.phymed.2018.11.034

  19. Abu-Elsaad, N., & El-Karef, A. (2018). The falconoid luteolin mitigates the myocardial inflammatory response induced by high-carbohydrate/high-fat diet in Wistar rats. Inflammation, 41(1), 221–231. https://doi.org/10.1007/s10753-017-0680-8

    Article  CAS  PubMed  Google Scholar 

  20. Skovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349–358. https://doi.org/10.1111/jdi.12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320. https://doi.org/10.1016/j.phrs.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  22. Vital, P., Larrieta, E., & Hiriart, M. (2006). Sexual dimorphism in insulin sensitivity and susceptibility to develop diabetes in rats. Journal of Endocrinology, 190(2), 425–432. https://doi.org/10.1677/joe.1.06596

    Article  CAS  PubMed  Google Scholar 

  23. Gheibi, S., Kashfi, K., & Ghasemi, A. (2017). A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine & Pharmacotherapy, 95, 605–613. https://doi.org/10.1016/J.BIOPHA.2017.08.098

    Article  CAS  Google Scholar 

  24. Sharma, A. K., Bharti, S., Ojha, S., Bhatia, J., Kumar, N., Ray, R., & Arya, D. S. (2011). Up-regulation of PPARγ, heat shock protein-27 and-72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. British Journal of Nutrition, 106(11), 1713–1723. https://doi.org/10.1017/S000711451100225X

    Article  CAS  PubMed  Google Scholar 

  25. Shyamala, M. P., Venukumar, M. R., & Latha, M. S. (2003). Antioxidant potential of the Syzygium aromaticum (Gaertn.) Linn. (cloves) in rats fed with high fat diet. Indian Journal of Pharmacology, 35(2), 99–103.

    Google Scholar 

  26. Banerjee, A., Das, D., Paul, R., Roy, S., Bhattacharjee, A., Prasad, S. K., & Maji, B. K. (2020). Altered composition of high-lipid diet may generate reactive oxygen species by disturbing the balance of antioxidant and free radicals. Journal of Basic and Clinical Physiology and Pharmacology, 31(3), 1–19. https://doi.org/10.1515/jbcpp-2019-0141

    Article  CAS  Google Scholar 

  27. Zhang, W. L., Yan, W. J., Sun, B., & Zou, Z. P. (2014). Synergistic effects of atorvastatin and rosiglitazone on endothelium protection in rats with dyslipidemia. Lipids in Health and Disease, 13(1), 1–5. https://doi.org/10.1186/1476-511X-13-168

    Article  CAS  Google Scholar 

  28. Liu, Y., Tian, X., Gou, L., Sun, L., Ling, X., & Yin, X. (2013). Luteolin attenuates diabetes-associated cognitive decline in rats. Brain Research Bulletin, 94, 23–29. https://doi.org/10.1016/j.brainresbull.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  29. Yang, J. T., Wang, J., Zhou, X. R., Xiao, C., Lou, Y. Y., Tang, L. H., & Qian, L. B. (2018). Luteolin alleviates cardiac ischemia/reperfusion injury in the hypercholesterolemic rat via activating Akt/Nrf2 signaling. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391(7), 719–728. https://doi.org/10.1007/s00210-018-1496-2

    Article  CAS  PubMed  Google Scholar 

  30. Friedewald, W., Levy, R., & Fredrickson, D. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502.

    Article  CAS  PubMed  Google Scholar 

  31. Dobiášová, M., & Frohlich, J. (2001). The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clinical Biochemistry, 34(7), 583–588. https://doi.org/10.1016/S0009-9120(01)00263-6

    Article  PubMed  Google Scholar 

  32. Mozaffari Godarzi, S., Valizade Gorji, A., Gholizadeh, B., Mard, S. A., & Mansouri, E. (2020). Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion. Nefrología, 40(3), 311–319. https://doi.org/10.1016/j.nefroe.2020.06.017

    Article  PubMed  Google Scholar 

  33. Boriskin, P., Deviatkin, A., Nikitin, A., Pavlova, O., & Toropovskiy, A. (2019). Relationship of catalase activity distribution in serum and tissues of small experimental animals. IOP Conference Series Earth and Environmental Science, 403(1), 012113. https://doi.org/10.1088/1755-1315/403/1/012113

  34. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  35. Elkadri, A., Thoeni, C., Deharvengt, S. J., Murchie, R., Guo, C., Stavropoulos, J. D., Marshall, C. R., Wales, P., Bandsma, R., Cutz, E., Roifman, C. M., Chitayat, D., Avitzur, Y., Stan, R. V., & Muise, A. M. (2015). Mutations in plasmalemma vesicle associated protein result in sieving protein-losing enteropathy characterized by hypoproteinemia, hypoalbuminemia, and hypertriglyceridemia. Cell Mol Gastroenterol Hepatol, 1(4), 381–394. https://doi.org/10.1016/j.jcmgh.2015.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu, G., Müller, O., Stange, E. F., & Fuchs, M. (2004). Impaired regulation of sterol regulatory element binding protein 2 in cholesterol gallstone-susceptible mice. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1688(3), 274–279. https://doi.org/10.1016/j.bbadis.2004.01.001

    Article  CAS  Google Scholar 

  37. Bancroft, J., & Gamble, M. (2008). Theory and practice of histopathological techniques (6th ed.). Churchill Livingstone.

    Google Scholar 

  38. Jang, A., Srinivasan, P., Lee, N. Y., Song, H. P., Lee, J. W., Lee, M., & Jo, C. (2008). Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chemico-Biological Interactions, 174(2), 109–117. https://doi.org/10.1016/j.cbi.2008.05.018

    Article  CAS  PubMed  Google Scholar 

  39. Sharma, A. K., Bharti, S., Goyal, S., Arora, S., Nepal, S., Kishore, K., & Arya, D. S. (2011). Upregulation of PPARγ by Aegle marmelos ameliorates insulin resistance and β-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats. Phytotherapy Research, 25(10), 1457–1465. https://doi.org/10.1002/ptr.3442

    Article  PubMed  Google Scholar 

  40. C. Thambiah, S., & Lai, L. C. (2021). Diabetic dyslipidaemia. Practical Laboratory Medicine, 26(May), e00248. https://doi.org/10.1016/j.plabm.2021.e00248

  41. Zang, Y., Igarashi, K., & Li, Y. L. (2016). Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Bioscience, Biotechnology and Biochemistry, 80(8), 1580–1586. https://doi.org/10.1080/09168451.2015.1116928

    Article  CAS  PubMed  Google Scholar 

  42. Chen, L., Tian, G., Tang, W., Luo, W., Liu, P., & Ma, Z. (2016). Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-ΚB pathway and insulin signalling pathway. Journal of Functional Foods, 22, 93–100. https://doi.org/10.1016/j.jff.2016.01.023

    Article  CAS  Google Scholar 

  43. Wong, T. Y., Tan, Y. Q., Lin, S. M., & Leung, L. K. (2017). Apigenin and luteolin display differential hypocholesterolemic mechanisms in mice fed a high-fat diet. Biomedicine and Pharmacotherapy, 96(November), 1000–1007. https://doi.org/10.1016/j.biopha.2017.11.131

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, Y., Liu, R., Shen, Z., & Cai, G. (2020). Combination of luteolin and lycopene effectively protect against the “two-hit” in NAFLD through Sirt1/AMPK signal pathway. Life Sciences, 256(June), 117990. https://doi.org/10.1016/j.lfs.2020.117990

    Article  CAS  PubMed  Google Scholar 

  45. Li, J., Inoue, J., Choi, J. M., Nakamura, S., Yan, Z., Fushinobu, S., & Sato, R. (2015). Identification of the flavonoid luteolin as a repressor of the transcription factor hepatocyte nuclear factor 4α. Journal of Biological Chemistry, 290(39), 24021–24035. https://doi.org/10.1074/jbc.M115.645200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gentile, D., Fornai, M., Pellegrini, C., Colucci, R., Benvenuti, L., Duranti, E., Antonioli, L. (2018). Luteolin prevents cardiometabolic alterations and vascular dysfunction in mice with HFD-induced obesity. Frontiers in Pharmacology, 9(SEP);1–13. https://doi.org/10.3389/fphar.2018.01094

  47. Park, H. S., Lee, K., Kim, S. H., Hong, M. J., Jeong, N. J., & Kim, M. S. (2020). Luteolin improves hypercholesterolemia and glucose intolerance through LXRα-dependent pathway in diet-induced obese mice. Journal of Food Biochemistry, 44(9), 1–9. https://doi.org/10.1111/jfbc.13358

    Article  CAS  Google Scholar 

  48. Kwon, E. Y., Jung, U. J., Park, T., Yun, J. W., & Choi, M. S. (2015). Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes, 64(5), 1658–1669. https://doi.org/10.2337/db14-0631

    Article  CAS  PubMed  Google Scholar 

  49. Liu, G., Zhang, Y., Liu, C., Xu, D., Zhang, R., Cheng, Y., & Chen, Y. (2014). Luteolin alleviates alcoholic liver disease induced by chronic and binge ethanol feeding in mice. Journal of Nutrition, 144(7), 1009–1015. https://doi.org/10.3945/jn.114.193128

    Article  CAS  PubMed  Google Scholar 

  50. El-Bassossy, H. M., Abo-Warda, S. M., & Fahmy, A. (2014). Chrysin and luteolin alleviate vascular complications associated with insulin resistance mainly through PPAR-γ activation. American Journal of Chinese Medicine, 42(5), 1153–1167. https://doi.org/10.1142/S0192415X14500724

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Y., Tian, X. Q., Song, X. X., Ge, J. P., & Xu, Y. C. (2017). Luteolin protect against diabetic cardiomyopathy in rat model via regulating the AKT/GSK-3β signalling pathway. Biomedical Research (India), 28(3), 1359–1363.

    CAS  Google Scholar 

  52. El-Bassossy, H. M., Abo-Warda, S. M., & Fahmy, A. (2013). Chrysin and luteolin attenuate diabetes-induced impairment in endothelial-dependent relaxation: Effect on lipid profile, AGEs and NO generation. Phytotherapy Research, 27(11), 1678–1684. https://doi.org/10.1002/ptr.4917

    Article  CAS  PubMed  Google Scholar 

  53. Nekohashi, M., Ogawa, M., Ogihara, T., Nakazawa, K., Kato, H., Misaka, T., & Kobayashi, S. (2014). Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter Niemann-Pick C1-Like 1 in Caco-2 cells and rats. PLoS ONE, 9(5), 1–9. https://doi.org/10.1371/journal.pone.0097901

    Article  CAS  Google Scholar 

  54. Yin, Y., Gao, L., Lin, H., Wu, Y., Han, X., Zhu, Y., & Li, J. (2017). Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. Biochemical and Biophysical Research Communications, 482(4), 720–726. https://doi.org/10.1016/j.bbrc.2016.11.101

    Article  CAS  PubMed  Google Scholar 

  55. Shon, J. C., Kim, W. C., Ryu, R., Wu, Z., Seo, J. S., Choi, M. S., & Liu, K. H. (2020). Plasma lipidomics reveals insights into anti-obesity effect of chrysanthemum morifolium ramat leaves and its constituent luteolin in high-fat diet-induced dyslipidemic mice. Nutrients, 12(10), 1–15. https://doi.org/10.3390/nu12102973

    Article  CAS  Google Scholar 

  56. Kwon, E. Y., Kim, S. Y., & Choi, M. S. (2018). Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients, 10(8), 979. https://doi.org/10.3390/nu10080979

  57. Lu, H. E., Chen, Y., Sun, X. B., Tong, B., & Fan, X. H. (2015). Effects of luteolin on retinal oxidative stress and inflammation in diabetes. RSC Advances, 5(7), 4898–4904. https://doi.org/10.1039/c4ra10756j

    Article  CAS  Google Scholar 

  58. Guo, X., Wang, X., Wang, Y., Ji, K., Ji, B. P., & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University: Science B, 19(7), 559–569. https://doi.org/10.1631/jzus.B1700254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545/FORMAT/EPUB

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, T., Wu, W., Li, D., Xu, T., Zhu, H., Pan, D., & Liu, Y. (2014). Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. International Immunopharmacology, 20(2), 346–351. https://doi.org/10.1016/j.intimp.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  61. Kwon, E. Y., & Choi, M. S. (2018). Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. Nutrients, 10(10), 1–17. https://doi.org/10.3390/nu10101415

    Article  CAS  Google Scholar 

  62. Abu-Elsaad, N., & El-Karef, A. (2019). Protection against nonalcoholic steatohepatitis through targeting IL-18 and IL-1alpha by luteolin. Pharmacological Reports, 71(4), 688–694. https://doi.org/10.1016/j.pharep.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  63. Tai, M., Zhang, J., Song, S., Miao, R., Liu, S., Pang, Q., & Liu, C. (2015). Protective effects of luteolin against acetaminophen-induced acute liver failure in mouse. International Immunopharmacology, 27(1), 164–170. https://doi.org/10.1016/j.intimp.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  64. Park, C. M., & Song, Y. S. (2019). Luteolin and luteolin-7-o-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GaLN/LPS-induced hepatitic ICR mice. Nutrition Research and Practice, 13(6), 473–479. https://doi.org/10.4162/nrp.2019.13.6.473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, H., Tan, X., Yang, D., Lu, J., Liu, B., Baiyun, R., & Zhang, Z. (2017). Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats. Oncotarget, 8(25), 40982–40993. https://doi.org/10.18632/oncotarget.17334

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang, D., Tan, X., Lv, Z., Liu, B., Baiyun, R., Lu, J., & Zhang, Z. (2016). Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Scientific Reports, 6(May), 1–12. https://doi.org/10.1038/srep37157

    Article  CAS  Google Scholar 

  67. Samy, R. P., Gopalakrishnakone, P., & Ignacimuthu, S. (2006). Anti-tumor promoting potential of luteolin against 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. Chemico-Biological Interactions, 164(1–2), 1–14. https://doi.org/10.1016/j.cbi.2006.08.018

    Article  CAS  PubMed  Google Scholar 

  68. Xu, H., Linn, B., Zhang, Y., & Ren, J. (2019). A review on the antioxidative and prooxidative properties of luteolin. Reactive Oxygen Species, 7(21), 136–147. https://doi.org/10.20455/ros.2019.833

    Article  CAS  Google Scholar 

  69. Rogers, M. A., Liu, J., Song, B. L., Li, B. L., Chang, C. C. Y., & Chang, T. Y. (2015). Acyl-CoA:Cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. Journal of Steroid Biochemistry and Molecular Biology, 151, 102–107. https://doi.org/10.1016/j.jsbmb.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  70. Kusunoki, J., Aragane, K., Kitamine, T., Kozono, H., Kano, K., Fujinami, K., & Sekine, Y. (2000). Postprandial hyperlipidemia in streptozotocin-induced diabetic rats is due to abnormal increase in intestinal acyl coenzyme A:cholesterol acyltransferase activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(1), 171–178. https://doi.org/10.1161/01.ATV.20.1.171

    Article  CAS  PubMed  Google Scholar 

  71. Wang, J., Gao, T., Wang, F., Xue, J., Ye, H., & Xie, M. (2019). Luteolin improves myocardial cell glucolipid metabolism by inhibiting hypoxia inducible factor-1α expression in angiotensin II/hypoxia-induced hypertrophic H9c2 cells. Nutrition Research, 65, 63–70. https://doi.org/10.1016/j.nutres.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  72. Horton, J. D., Goldstein, J. L., & Brown, M. S. (2002). SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 109(9), 1125–1131. https://doi.org/10.1172/JCI0215593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Edwards, P. A., Tabor, D., Kast, H. R., & Venkateswaran, A. (2000). Regulation of gene expression by SREBP and SCAP. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1529(1–3), 103–113. https://doi.org/10.1016/S1388-1981(00)00140-2

    Article  CAS  Google Scholar 

  74. Ogawa, M., Yamanashi, Y., Takada, T., Abe, K., & Kobayashi, S. (2017). Effect of luteolin on the expression of intestinal cholesterol transporters. Journal of Functional Foods, 36, 274–279. https://doi.org/10.1016/J.JFF.2017.07.008

    Article  CAS  Google Scholar 

  75. Wong, T. Y., Lin, S. M., & Leung, L. K. (2015). The flavone luteolin suppresses SREBP-2 expression and post-translational activation in hepatic cells. PLoS ONE, 10(8), 1–18. https://doi.org/10.1371/journal.pone.0135637

    Article  CAS  Google Scholar 

  76. Tan, Y. Q., Wong, T. Y., Lin, S. M., & Leung, L. K. (2017). Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cells. Molecular and Cellular Biochemistry, 424(1–2), 163–172. https://doi.org/10.1007/s11010-016-2851-6

    Article  CAS  PubMed  Google Scholar 

  77. Domitrović, R., Jakovac, H., Grebić, D., Milin, Č, & Radošević-Stašić, B. (2008). Dose- and time-dependent effects of luteolin on liver metallothioneins and metals in carbon tetrachloride-induced hepatotoxicity in mice. Biological Trace Element Research, 126(1–3), 176–185. https://doi.org/10.1007/s12011-008-8181-0

    Article  CAS  PubMed  Google Scholar 

  78. Orji, C. E., Okpoko, C. K., Agbata, C. A., Nnaemeka, J., Okeke, A. C., & Ihekwereme, C. P. (2020). Evaluation of the effect of luteolin on the hepatic and hematopoietic systems in albino rats. Journal of Clinical Toxicology, 10(1000434), 2–6.

    Google Scholar 

  79. Xiong, J., Wang, K., Yuan, C., Xing, R., Ni, J., Hu, G., & Wang, X. (2017). Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. International Journal of Molecular Medicine, 39(1), 113–125. https://doi.org/10.3892/ijmm.2016.2809

    Article  CAS  PubMed  Google Scholar 

  80. Czeczot, H., Tudek, B., Kusztelak, J., Szymczyk, T., Dobrowolska, B., Glinkowska, G., & Strzelecka, H. (1990). Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs. Mutation Research/Genetic Toxicology, 240(3), 209–216. https://doi.org/10.1016/0165-1218(90)90060-F

    Article  CAS  Google Scholar 

  81. Horváthová, K., Chalupa, I., Šebová, L., Tóthová, D., & Vachálková, A. (2005). Protective effect of quercetin and luteolin in human melanoma HMB-2 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 565(2), 105–112. https://doi.org/10.1016/j.mrgentox.2004.08.013

    Article  CAS  Google Scholar 

  82. Mittra, B., Saha, A., Chowdhury, A. R., Pal, C., Mandal, S., Mukhopadhyay, S., & Majumder, H. K. (2000). Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Molecular medicine (Cambridge, Mass.), 6(6), 527–541. https://doi.org/10.1007/bf03401792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tsilioni, I., Taliou, A., Francis, K., & Theoharides, T. C. (2015). Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Translational Psychiatry, 5(9), e647–e655. https://doi.org/10.1038/tp.2015.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin, L. C., Pai, Y. F., & Tsai, T. H. (2015). Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. Journal of Agricultural and Food Chemistry, 63(35), 7700–7706. https://doi.org/10.1021/jf505848z

    Article  CAS  PubMed  Google Scholar 

  85. Dang, H., Meng, M. H. W., Zhao, H., Iqbal, J., Dai, R., Deng, Y., & Lv, F. (2014). Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies. Journal of Nanoparticle Research, 16(4), 2347. https://doi.org/10.1007/s11051-014-2347-9

    Article  CAS  Google Scholar 

  86. Sinha, A., & Suresh, P. K. (2019). Enhanced Induction of apoptosis in HaCaT cells by luteolin encapsulated in PEGylated liposomes—role of caspase-3/caspase-14. Applied Biochemistry and Biotechnology, 188(1), 147–164. https://doi.org/10.1007/s12010-018-2907-z

    Article  CAS  PubMed  Google Scholar 

  87. Shinde, P., Agraval, H., Singh, A., Yadav, U. C. S., & Kumar, U. (2019). Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. Journal of Drug Delivery Science and Technology, 52, 369–378. https://doi.org/10.1016/j.jddst.2019.04.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Natesan Pazhanivel for his inputs regarding the histopathological examination of the liver.

Author information

Authors and Affiliations

Authors

Contributions

Syed Ilyas Shehnaz (S. I. S.) conceived and designed the experiments, guided by Anitha Roy. S. I. S. performed the experiments, guided by Rajagopalan Vijayaraghavan (R. V.). S. I. S. and R. V. performed the statistical analysis. The first draft of the manuscript was written by S. I. S. with contributions to the methodology section by R. V. and Senthilkumar Sivanesan. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Syed Ilyas Shehnaz.

Ethics declarations

Ethics Approval

Ethics approval in handling the rats and conducting the animal studies was obtained from the Institutional Animal Ethics Committee of Saveetha Institute of Medical and Technical Sciences (SIMATS) with an approval reference number of (SU/CLAR/RD/007/2019, dated 21 December 2019).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehnaz, S.I., Roy, A., Vijayaraghavan, R. et al. Luteolin Mitigates Diabetic Dyslipidemia in Rats by Modulating ACAT-2, PPARα, SREBP-2 Proteins, and Oxidative Stress. Appl Biochem Biotechnol 195, 4893–4914 (2023). https://doi.org/10.1007/s12010-023-04544-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04544-4

Keywords

Navigation