Skip to main content

Advertisement

Log in

Antitumor Activity of Taxol Engross Taxol-Caveolin-1 Interaction via Lipid Raft Structure—“Caveolae”

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Taxol is one of the most widely used natural antitumor drugs that have shown considerable success in treating cancers of different lineage. However, the development of resistance to taxol is still a significant issue. Caveolae, the cave-like structures found on the surface of many cancerous cells, are enriched in cholesterol and are known to play a pivotal role in drug uptake. Caveolin-1 (Cav-1), the principal structural proteins of the caveolae, interacts with signaling molecules through a scaffolding domain. In the present study, we observed that Cav-1-GFP clusters were instantly recruited to the cell membrane. Interestingly, Caveolae formation followed by internalization was observed after the treatment with time. The recruitment and the formation of the Cav-1-GFP clusters are provided in supplementary video 2 (SV2). The results obtained from molecular docking indicate favorable taxol-Cav-1 interaction. To further confirm the influence of Cav-1 proteins in the uptake and effects of taxol, the cells were treated with beta-cyclodextrin (β-CD), cholesterol, and taxol combinations. The result suggests that the depletion of cholesterol in HeLa cells makes them less susceptible to taxol at a lower concentration. These observations provide evidence of the interaction between Cav-1 and taxol. Further studies that may elucidate the molecular mechanism of uptake of taxol through caveolae/Cav-1 will help to determine if Cav-1 can be used to increase the uptake of taxol by cancer cells and sensitize the drug-resistant cancer cells to taxol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data will be available upon request.

References

  1. Williams, T. M., & Lisanti, M. P. (2004). The caveolin genes: From cell biology to medicine. Annals of Medicine, 36, 584–595.

    Article  CAS  PubMed  Google Scholar 

  2. Scherer, P. E., Tang, Z., Chun, M., Sargiacomo, M., & Lodish, H. F. (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. Journal of Biological Chemistry, 270, 16395–16401. https://doi.org/10.1074/jbc.270.27.16395

    Article  CAS  PubMed  Google Scholar 

  3. Fridolfsson, H. N., Roth, D. M., Insel, P. A., & Patel, H. H. (2014). Regulation of intracellular signalling and function by caveolin. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 28, 3823–3831. https://doi.org/10.1096/fj.14-252320

    Article  CAS  PubMed  Google Scholar 

  4. Boscher, C., & Nabi, I. R. (2012). Caveolin-1: Role in cell signaling. Advances in Experimental Medicine and Biology, 729, 29–50. https://doi.org/10.1007/978-1-4614-1222-9_3

    Article  CAS  PubMed  Google Scholar 

  5. Gupta, R., Toufaily, C., & Annabi, B. (2014). Caveolin and cavin family members: Dual roles in cancer. Biochimie, 107, 188–202. https://doi.org/10.1016/j.biochi.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  6. Li, L., Ren, C., Yang, G., Goltsov, A. A., & Tabata, K. (2009). Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Molecular Cancer Research, 7, 1781–1791. https://doi.org/10.1158/1541-7786.MCR-09-0255

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X., Lu, B., Dai, C., Fu, Y., & Hao, K. (2020). Caveolin-1 promotes chemoresistance of gastric cancer cells to cisplatin by activating WNT/β-catenin pathway. Frontiers in Oncology, 10, 46. https://doi.org/10.3389/fonc.2020.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Selleri, S., Arnaboldi, F., Palazzo, M., Hussein, U., & Balsari, A. (2005). Caveolin-1 is expressed on multipotent cells of hair follicles and might be involved in their resistance to chemotherapy. British Journal of Dermatology, 153, 506–513. https://doi.org/10.1111/j.1365-2133.2005.06746.x

    Article  CAS  PubMed  Google Scholar 

  9. Shajahan, A. N., Wang, A., Decker, M., Minshall, R. D., & Liu, M. C. (2007). Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. Journal of Biological Chemistry, 282, 5934–5943. https://doi.org/10.1074/jbc.M608857200

    Article  CAS  PubMed  Google Scholar 

  10. Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of nanomedicines. Journal of Controlled Release, 145, 182–195. https://doi.org/10.1016/j.jconrel.2010.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, C., He, B., Dai, W., Zhang, H., & Zheng, Y. (2020). The role of caveolin-1 in the biofate and efficacy of antitumor drugs and their nano-drug delivery systems. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2020.11.020

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chatterjee, M., Ben-Josef, E., Robb, R., Vedaie, M., & Seum, S. (2017). Caveolae-mediated endocytosis is critical for albumin cellular uptake and response to albumin-bound chemotherapy. Cancer Research, 77, 5925–5937. https://doi.org/10.1158/0008-5472.can-17-0604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sekhar, S. C., Kasai, T., Satoh, A., Shigehiro, T., & Mizutani, A. (2013). Identification of caveolin-1 as a potential causative factor in the generation of trastuzumab resistance in breast cancer cells. Journal of Cancer, 4, 391–401. https://doi.org/10.7150/jca.6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung, Y.-C., Wei, W.-C., Chang, K.-J., & Chao, W.-T. (2015). Abstract 722: Caveolin-1-dependent endocytosis enhanced chemosensitivity of TDM-1 in HER-2-positive breast cancer cells. Cancer Research, 75, 722–722. https://doi.org/10.1158/1538-7445.am2015-722

    Article  Google Scholar 

  15. Sundaramoorthy, P., Ramasamy, T., Mishra, S. K., Jeong, K.-Y., & Yong, C. S. (2016). Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomaterialia, 42, 220–231. https://doi.org/10.1016/j.actbio.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  16. Rowinsky, E. K., & Donehower, R. C. (1995). Paclitaxel (taxol). New England Journal of Medicine, 332, 1004–1014. https://doi.org/10.1056/NEJM199504133321507

    Article  CAS  PubMed  Google Scholar 

  17. Yang, C. P., Galbiati, F., Volonte, D., Horwitz, S. B., & Lisanti, M. P. (1998). Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Letters, 439, 368–372. https://doi.org/10.1016/s0014-5793(98)01354-4

    Article  CAS  PubMed  Google Scholar 

  18. Guan, J., Yuan, Z., He, J., Wu, Z., & Liu, B. (2016). Overexpression of caveolin-1 reduces taxol resistance in human osteosarcoma cells by attenuating PI3K-Akt-JNK-dependent autophagy. Experimental and Therapeutic Medicine, 12, 2815–2822. https://doi.org/10.3892/etm.2016.3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahmed, N., Dasari, S., Srivastava, S. S., Sneh, A., & Ahmad, A. (2008). Taxol and 10-deacetylbaccatinIII induce distinct changes in the dynamics of caveolae. FEBS Letters, 582, 3595–3600. https://doi.org/10.1016/j.febslet.2008.09.029

    Article  CAS  PubMed  Google Scholar 

  20. Pelkmans, L., & Zerial, M. (2005). Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature, 436, 128–133. https://doi.org/10.1038/nature03866

    Article  CAS  PubMed  Google Scholar 

  21. Parton, R. G., & Simons, K. (1995). Digging into caveolae. Science, 269, 1398–1399. https://doi.org/10.1126/science.7660120

    Article  CAS  PubMed  Google Scholar 

  22. Anderson, R. G. (1998). The caveolae membrane system. Annual Review of Biochemistry, 67, 199–225. https://doi.org/10.1146/annurev.biochem.67.1.199

    Article  CAS  PubMed  Google Scholar 

  23. Pelkmans, L., Kartenbeck, J., & Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biology, 3, 473–483. https://doi.org/10.1038/35074539

    Article  CAS  PubMed  Google Scholar 

  24. Rohde, M., Müller, E., Chhatwal, G. S., & Talay, S. R. (2003). Host cell caveolae act as an entry-port for group A streptococci. Cellular Microbiology, 5, 323–342. https://doi.org/10.1046/j.1462-5822.2003.00279.x

    Article  CAS  PubMed  Google Scholar 

  25. Shin, J.-S., Gao, Z., & Abraham, S. N. (2000). Involvement of cellular caveolae in bacterial entry into mast cells. Science, 289, 785. https://doi.org/10.1126/science.289.5480.785

    Article  CAS  PubMed  Google Scholar 

  26. Parton, R., & Simons, K. (1995). Digging into caveolae. Science, 269(5229), 1398–1399. https://doi.org/10.1126/science.7660120

    Article  CAS  PubMed  Google Scholar 

  27. Chung, Y. C., Chang, C. M., Wei, W. C., Chang, T. W., & Chang, K. J. (2018). Metformin-induced caveolin-1 expression promotes T-DM1 drug efficacy in breast cancer cells. Science and Reports, 8, 018–22250.

    Google Scholar 

  28. Ahmed, N., Pany, S., Rahman, A., Srivastava, S. S., & Sneh, A. (2010). Modulation of PP2A activity by Jacalin: Is it through caveolae and ER chaperones? Glycoconjugate Journal, 27, 723–734. https://doi.org/10.1007/s10719-009-9258-5

    Article  CAS  PubMed  Google Scholar 

  29. Magri, N. F., & Kingston, D. G. I. (1998). Modified taxols, 4. Synthesis and biological activity of taxols modified in the sidechain. Journal of Natural Products, 51, 298.

    Article  Google Scholar 

  30. Mellado, W., Magri, N. F., Kingston, D. G. I., Garcia, A. R., Orr, G. A., & Horwitz, S. B. (1984). Preparation and biological activity of taxol acetates. Biochemical and Biophysical Research Communications, 124, 329.

    Article  CAS  PubMed  Google Scholar 

  31. Koleske, A. J., Baltimore, D., & Lisanti, M. P. (1995). Reduction in caveolin and caveolae in ontogenetically transformed cells. Proceedings of the National academy of Sciences of the United States of America, 92, 1381–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mahammad, S., and Parmryd, I., (2015) Cholesterol depletion using methyl-β-cyclodextrin. Methods of Molecular Biology 1752–1755_1758. https://doi.org/10.1007/978-1-4939-1752-5_8.

  33. Breen, M. R., Camps, M., Carvalho-Simoes, F., Zorzano, A., & Pilch, P. F. (2012). Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteasomal degradation of cavin-2 in a switch-like fashion. PLoS One, 7, e34516–e34516. https://doi.org/10.1371/journal.pone.0034516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Indian Council of Medical Research (ICMR) by providing an SRF (45/4/2019/IMM/BMS), New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

NA conceived and designed the methodology and research. BAK and NA conducted the experiments. NA and SJ analyzed the data. NA and SJ wrote the manuscript. All the authors read and approved the manuscript. NA and SJ are assistant professors, and BAK is a Ph.D. scholar.

Corresponding author

Correspondence to Neesar Ahmed.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 152839 KB)

Supplementary file2 (AVI 152839 KB)

Supplementary file3 (AVI 152839 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommanaboina, A., Jamal, S. & Ahmed, N. Antitumor Activity of Taxol Engross Taxol-Caveolin-1 Interaction via Lipid Raft Structure—“Caveolae”. Appl Biochem Biotechnol 195, 4387–4398 (2023). https://doi.org/10.1007/s12010-023-04355-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04355-7

Keywords

Navigation