Skip to main content
Log in

Optimization of C50 Carotenoids Production by Open Fermentation of Halorubrum sp. HRM-150

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 μg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20–25%, rotation speed 150–200 rpm, and pH 7.0–8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 μg/mL (701.40 ± 21.51 μg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Halorubrum sp. HRM-150 has been deposited in China General Microbiological Culture Collection Center (CGMCC 17,350). Other data and materials are available from the corresponding author.

References

  1. Oren, A. (2014). Halophilic archaea on earth and in space: Growth and survival under extreme conditions. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 372, 20140194.

    Article  Google Scholar 

  2. Stan-Lotter, H., & Fendrihan, S. (2015). Halophilic archaea: Life with desiccation, radiation and oligotrophy over geological times. Life-Basel, 5, 1487–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Legat, A., Gruber, C., Zangger, K., Wanner, G., & Stan-Lotter, H. (2010). Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Applied Microbiology and Biotechnology, 87, 1119–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Litchfield, C. D. (2011). Potential for industrial products from the halophilic archaea. Journal of Industrial Microbiology & Biotechnology, 38, 1635–1647.

    Article  CAS  Google Scholar 

  5. Squillaci, G., Finamore, R., Diana, P., Restaino, O. F., Schiraldi, C., Arbucci, S., Ionata, E., La Cara, F., & Morana, A. (2016). Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica. Applied Microbiology and Biotechnology, 100, 613–623.

    Article  CAS  PubMed  Google Scholar 

  6. Pfeifer, K., Ergal, I., Koller, M., Basen, M., Schuster, B., & Simon, K. M. R. (2021). Archaea biotechnology. Biotechnology Advances, 47, 107668.

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigo-Baños, M., Garbayo, I., Vílchez, C., Bonete, M. J., & Martínez-Espinosa, R. M. (2015). Carotenoids from haloarchaea and their potential in biotechnology. Marine Drugs, 13, 5508–5532.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Naziri, D., Hamidi, M., Hassanzadeh, S., Tarhriz, V., Zanjani, B. M., Nazemyieh, H., & Hejazi, M. S. (2014). Analysis of carotenoid production by Halorubrum sp. TBZ126; An extremely halophilic archeon from Urmia Lake. Advanced Pharmaceutical Bulletin, 4, 61–67.

    CAS  PubMed  Google Scholar 

  9. Yatsunami, R., Ando, A., Yang, Y., Takaichi, S., Kohno, M., Matsumura, Y., & Nakamura, S. (2014). Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Frontiers in Microbiology, 5, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Giani, M., Garbayo, I., Vílchez, C., & Martínez-Espinosa, R. M. (2019). Haloarchaeal carotenoids: Healthy novel compounds from extreme environments. Marine Drugs, 17, 524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hou, J., & Cui, H. L. (2018). In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Current Microbiology, 75, 266–271.

    Article  CAS  PubMed  Google Scholar 

  12. Flores, N., Hoyos, S., Venegas, M., Galetovic, A., Zuniga, L. M., Fabrega, F., Paredes, B., Salazar-Ardiles, C., Vilo, C., Ascaso, C., Wierzchos, J., Souza-Egipsy, V., Araya, J. E., Batista-Garcia, R. A., & Gomez-Silva, B. (2020). Haloterrigena sp. strain SGH1, a bacterioruberin-rich, perchlorate-tolerant halophilic archaeon isolated from halite microbial communities, Atacama Desert, Chile. Frontiers in Microbiology, 11, 324.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Squillaci, G., Parrella, R., Carbone, V., Minasi, P., La-Cara, F., & Morana, A. (2017). Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: Identification and antioxidant activity. Extremophiles, 21, 933–945.

    Article  CAS  PubMed  Google Scholar 

  14. Fariq, A., Yasmin, A., & Jamil, M. (2019). Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles, 23, 435–449.

    Article  CAS  PubMed  Google Scholar 

  15. Hegazy, G. E., Abu-Serie, M. M., Abo-Elela, G. M., Ghozlan, H., Sabry, S. A., Soliman, N. A., & Abdel-Fattah, Y. R. (2020). In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Scientific Reports, 10, 5986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giani, M., Montoyo-Pujol, Y. G., Peiró, G., & Martínez-Espinosa, R. M. (2021). Halophilic carotenoids and breast cancer: From salt marshes to biomedicine. Marine Drugs, 19, 594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yin, J., Chen, J. C., Wu, Q., & Chen, G. Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 33, 1433–1442.

    Article  CAS  PubMed  Google Scholar 

  18. Karthikeyan, P., Bhat, S. G., & Chandrasekaran, M. (2013). Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi Journal of Biological Sciences, 20, 205–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar, V., & Tiwari, S. K. (2017). Halocin HA1: An archaeocin produced by the haloarchaeon Haloferax larsenii HA1. Process Biochemistry, 61, 202–208.

    Article  CAS  Google Scholar 

  20. Kaur, R., & Tiwari, S. K. (2021). Purification and characterization of a new Halocin HA4 from Haloferax larsenii HA4 isolated from a salt lake. Probiotics and Antimicrobial Proteins, 13, 1458–1466.

    Article  CAS  PubMed  Google Scholar 

  21. Li, T., Chen, X. B., Chen, J. C., Wu, Q., & Chen, G. Q. (2014). Open and continuous fermentation: Products, conditions and bioprocess economy. Biotechnology Journal, 9, 1503–1511.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, C., Baffoe, D. K., Zhan, Y., Zhang, M., Li, Y., & Zhang, G. (2019). Halophile, an essential platform for bioproduction. Journal of Microbiological Methods, 166, 105704.

    Article  CAS  PubMed  Google Scholar 

  23. Tan, D., Xue, Y. S., Aibaidula, G., & Chen, G. Q. (2011). Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 102, 8130–8136.

    Article  CAS  PubMed  Google Scholar 

  24. Fu, X. Z., Tan, D., Aibaidula, G., Wu, Q., Chen, J. C., & Chen, G. Q. (2014). Development of Halomonas TD01 as a host for open production of chemicals. Metabolic Engineering, 23, 78–91.

    Article  CAS  PubMed  Google Scholar 

  25. Yue, H., Ling, C., Yang, T., Chen, X., Chen, Y., Deng, H., & Chen, G. Q. (2014). A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnology for Biofuels, 7, 108.

    Article  Google Scholar 

  26. Cai, S., Wu, Y., Li, Y., Yang, S., Liu, Z., Ma, Y., Lv, J., Shao, Y., Jia, H., Zhao, Y., & Cai, L. (2021). Production of polyhydroxyalkanoates in unsterilized hyper-saline medium by halophiles using waste silkworm excrement as carbon source. Molecules, 26, 7122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamidi, M., Abdin, M. Z., Nazemyieh, H., Hejazi, M. A., & Hejazi, M. S. (2014). Optimization of total carotenoid production by Halorubrum Sp. TBZ126 using response surface methodology. Journal of Microbial & Biochemical Technology, 6, 286–294.

    Article  Google Scholar 

  28. Haldar, D., Sen, D., & Gayen, K. (2017). Development of spectrophotometric method for the analysis of multi-component carbohydrate mixture of different moieties. Applied Biochemistry and Biotechnology, 181, 1416–1434.

    Article  CAS  PubMed  Google Scholar 

  29. El-Sayed, W. S., Takaichi, S., Saida, H., Kamekura, M., Abu-Shady, M., Seki, H., & Kuwabara, T. (2002). Effects of light and low oxygen tension on pigment biosynthesis in Halobacterium salinarum, revealed by a novel method to quantify both retinal and carotenoids. Plant and Cell Physiology, 43, 379–383.

    Article  CAS  PubMed  Google Scholar 

  30. Mancinelli, R. L., Landheim, R., Sanchez-Porro, C., Dornmayr-Pfaffenhuemer, M., Gruber, C., Legat, A., Ventosa, A., Radax, C., Ihara, K., White, M. R., & Stan-Lotter, H. (2009). Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. International Journal of Systematic and Evolutionary Microbiology, 59, 1908–1913.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y., Yatsunami, R., Ando, A., Miyoko, N., Fukui, T., Takaichi, S., & Nakamura, S. (2015). Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. Journal of Bacteriology, 197, 1614–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y., Chen, C., Cai, D., Wang, Z., Qin, P., & Tan, T. (2016). The optimization of L-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions. Bioresource Technology, 218, 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  33. Cai, S., Wu, Y., Liu, R., Jia, H., Qiu, Y., Jiang, M., Ma, Y., Yang, X., Zhang, S., Zhao, Y., & Cai, L. (2022). Study on the production of high 3 HV content PHBV via an open fermentation with waste silkworm excrement as the carbon source by the haloarchaeon Haloferax mediterranei. Frontiers in Microbiology, 13, 981605.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guo, N., Wang, Y., Tong, T., & Wang, S. (2018). The fate of antibiotic resistance genes and their potential hosts during bio-electrochemical treatment of high-salinity pharmaceutical wastewater. Water Research, 133, 79–86.

    Article  CAS  PubMed  Google Scholar 

  35. Sui, L., Ren, B., Wang, S., Gao, M., & Van Stappen, G. (2020). Archaea Haloferax supplementation improves Artemia biomass production in hypersaline conditions. Aquaculture, 528, 735540.

    Article  CAS  Google Scholar 

  36. Yue, H., Ling, C., Yang, T., Chen, X., Chen, Y., Deng, H., Wu, Q., Chen, J., & Chen, G. Q. (2014). A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnology for Biofuels and Bioproducts, 7, 108.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Project of Tianjin Municipal Education Commission (No. 2019KJ220); the Open Project Program of Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education (No. EMTUST-21–01); and China One Belt One Road Foreign Expert Research Collaboration Grant (Ministry of Science and Technology, China, No. DL2021002001L).

Author information

Authors and Affiliations

Authors

Contributions

Ying-Chao Ma conceived and designed the research, analyzed the data, and drafted the article. Mei-Rong Gao analyzed the data and drafted the article. Huan Yang performed the up-scaled experiments and revised the manuscript. Jun-Yao Jiang contributed to the orthogonal experiments. Wei Xie contributed to the data analysis and revision of the manuscript. Wan-Ping Su participated in data analysis. Bo Zhang supported the research, analyzed the data, and revised the manuscript. Yik-Sung Yeong contributed to data analysis and manuscript revision. Wu-Yan Guo revised the manuscript. Li-Ying Sui conceived and designed the research and revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-Ying Sui.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YC., Gao, MR., Yang, H. et al. Optimization of C50 Carotenoids Production by Open Fermentation of Halorubrum sp. HRM-150. Appl Biochem Biotechnol 195, 3628–3640 (2023). https://doi.org/10.1007/s12010-023-04319-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04319-x

Keywords

Navigation