Skip to main content

Advertisement

Log in

Identify Potential Urine Biomarkers for Bladder Cancer Prognosis Using NGS Data Analysis and Experimental Validation

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bladder cancer (BC) is one of the most often reported malignancies globally, with a high recurrence rate and associated morbidity and mortality, especially in advanced BC. There has been a surge in the number of molecular targets revealed for BC prognosis and treatment. However, there is still a great need to discover novel biomarkers. Consequently, the current study investigated biomarkers that might indicate the progression of bladder cancer. In this study, bioinformatics analysis was done on a single GEO dataset, and TCGA-BLCA information was connected with differentially expressed genes (DEGs). The levels of mRNA and protein expression were validated using qRT-PCR. According to our findings, CRYAB, ECM1, ALDOB, AOC, GPX3, IGFBP7, AQP2, LASS2, TMEM176A, GALNT1, and LASS2 were highly enriched in cell division, identical protein binding, and developmental process in bladder cancer patients. In addition, among the highly differentiated genes, ECM1, GALNT1, LASS2, and GPX3 showed significant molecular alterations in BC, which are crucial for marker identification. Moreover, the mRNA, CNVs, and protein levels of ECM1, GALNT1, LASS2, and GPX3 were significantly increased in BC patients. Our predictions and analysis studies stated that these four genes act as urine biomarkers and played a crucial role in disease prognosis and the therapeutic process of bladder cancer. Our outcomes showed that these four novel urine biomarkers have the potential to provide innovative diagnostics, early predictions, and disease targets, ultimately improving the BC patient’s prognosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALDOB :

Aldolase B enzyme

AOC :

Allene oxide cyclase

AQP2 :

Aquaporin 2

BC :

Bladder cancer

cDNA :

Complementary deoxyribonucleic acid

CNVs :

Copy number variation

CRYAB :

Alpha-crystallin B chain

DEG :

Differentially expressed genes

ECM1 :

Extracellular matrix protein 1

EV :

Extracellular vesicles

GalNAc :

N-acetyl-d-galactosamine

GALNT1 :

N-acetylgalactosaminyltransferase 1

GEO :

Gene Expression Omnibus

GPX3 :

Glutathione peroxidase 3

IGFBP7 :

Insulin-like growth factor-binding protein 7

KEGG :

Kyoto Encyclopedia of Genes and Genomes

LASS2 :

LAG1 longevity-assurance homolog 2

MIBC :

Muscle-invasive bladder cancer

mRNA :

Messenger RNA

NGS :

Next-generation sequencing

NIMBC :

Non-muscle-invasive bladder carcinomas

NMP22 :

Nuclear matrix protein 22

PPI :

Protein-protein interaction networks

qRT-PCR :

Real-time quantitative reverse transcription-polymerase chain reaction

STRING :

Search Tool for the Retrieval of Interacting Genes/Proteins

TCGA :

The Cancer Genome Atlas

TCGA-BLCA :

Cancer genome atlas bladder cancer

TMEM176A :

Human transmembrane protein 176A

UALCAN :

User-friendly, interactive web resource for analyzing cancer transcriptome data

References

  1. Vartolomei, M.D., Porav-Hodade, D., Ferro, M., Mathieu, R., Abufaraj, M., Foerster, B., et al. (Eds). (2018). Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non–muscle-invasive bladder cancer (NMIBC): A systematic review and meta-analysis. Urologic Oncology: Seminars and Original Investigations; Elsevier.

  2. Chen, L., Li, W., Li, Z., Song, Y., Zhao, J., Chen, Z., et al. (2021). circNUDT21 promotes bladder cancer progression by modulating the miR-16–1–3p/MDM2/p53 axis. Molecular Therapy. Nucleic Acids, 26, 625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oeyen, E., Hoekx, L., De Wachter, S., Baldewijns, M., Ameye, F., & Mertens, I. (2019). Bladder cancer diagnosis and follow-up: The current status and possible role of extracellular vesicles. International Journal of Molecular Sciences, 20(4), 821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    PubMed  Google Scholar 

  5. Batista, R., Vinagre, J., Prazeres, H., Sampaio, C., Peralta, P., Conceição, P., et al. (2019). Validation of a novel, sensitive, and specific urine-based test for recurrence surveillance of patients with non-muscle-invasive bladder cancer in a comprehensive multicenter study. Frontiers in Genetics, 10, 1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ng, K., Stenzl, A., Sharma, A., Vasdev, N., (Eds). (2021). Urinary biomarkers in bladder cancer: A review of the current landscape and future directions. Urologic Oncology: Seminars and Original Investigations; Elsevier.

  7. Parker, J., & Spiess, P. E. (2011). Current and emerging bladder cancer urinary biomarkers. The Scientific World Journal, 11, 1103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhat, A., & Ritch, C. R. (2019). Urinary biomarkers in bladder cancer: Where do we stand? Current Opinion in Urology, 29(3), 203–9.

    Article  PubMed  Google Scholar 

  9. di Meo, N. A., Loizzo, D., Pandolfo, S. D., Autorino, R., Ferro, M., Porta, C., et al. (2022). Metabolomic approaches for detection and identification of biomarkers and altered pathways in bladder cancer. International Journal of Molecular Sciences, 23(8), 4173.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mohsenzadegan, M., Razmi, M., Vafaei, S., Abolhasani, M., Madjd, Z., SaeednejadZanjani, L., et al. (2022). Co-expression of cancer-testis antigens of MAGE-A6 and MAGE-A11 is associated with tumor aggressiveness in patients with bladder cancer. Scientific Reports, 12(1), 1–16.

    Google Scholar 

  11. Ward, D. G., Baxter, L., Gordon, N. S., Ott, S., Savage, R. S., Beggs, A. D., et al. (2016). Multiplex PCR and next generation sequencing for the non-invasive detection of bladder cancer. PLoS One, 11(2), e0149756.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pardini, B., Cordero, F., Naccarati, A., Viberti, C., Birolo, G., Oderda, M., et al. (2018). microRNA profiles in urine by next-generation sequencing can stratify bladder cancer subtypes. Oncotarget, 9(29), 20658.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Speck-Planche, A., Kleandrova, V. V., Luan, F., & Cordeiro, M. N. D. S. (2013). Unified multi-target approach for the rational in silico design of anti-bladder cancer agents. Anti-Cancer Agents in Medicinal Chemistry, 13(5), 791–800.

    Article  CAS  PubMed  Google Scholar 

  14. Robertson, A. G., Kim, J., Al-Ahmadie, H., Bellmunt, J., Guo, G., Cherniack, A. D., et al. (2017). Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell, 171(3), 540–56.e25. https://doi.org/10.1016/j.cell.2017.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., et al. (2013). The cancer genome atlas pan-cancer analysis project. Nature Genetics, 45(10), 1113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ware, A. P., Kabekkodu, S. P., Chawla, A., Paul, B., & Satyamoorthy, K. (2022). Diagnostic and prognostic potential clustered miRNAs in bladder cancer. 3 Biotech, 12(8), 1–15.

    Article  Google Scholar 

  17. Milan, T., & Wilhelm, B. T. (2017). Mining cancer transcriptomes: Bioinformatic tools and the remaining challenges. Molecular Diagnosis & Therapy., 21(3), 249–258. https://doi.org/10.1007/s40291-017-0264-1

    Article  CAS  Google Scholar 

  18. Ahn, J.-H., Kang, C.-K., Kim, E.-M., Kim, A.-R., & Kim, A. (2022). Proteomics for early detection of non-muscle-invasive bladder cancer: Clinically useful urine protein biomarkers. Life (Basel, Switzerland), 12(3), 395.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, C., Berndt-Paetz, M., & Neuhaus, J. (2020). Identification of key biomarkers in bladder cancer: Evidence from a bioinformatics analysis. Diagnostics (Basel), 10(2), 66.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y., Fang, L., Zang, Y., & Xu, Z. (2018). Identification of core genes and key pathways via integrated analysis of gene expression and DNA methylation profiles in bladder cancer. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 3024.

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira, MCd., Caires, H. R., Oliveira, M. J., Fraga, A., Vasconcelos, M. H., & Ribeiro, R. (2020). Urinary biomarkers in bladder cancer: Where do we stand and potential role of extracellular vesicles. Cancers (Basel), 12(6), 1400.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu, Y.-R., Ortiz-Bonilla, C. J., & Lee, Y.-F. (2018). Extracellular vesicles in bladder cancer: Biomarkers and beyond. International Journal of Molecular Sciences, 19(9), 2822.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Song, Y., Jin, D., Ou, N., Luo, Z., Chen, G., Chen, J., et al. (2020). Gene expression profiles identified novel urine biomarkers for diagnosis and prognosis of high-grade bladder urothelial carcinoma. Frontiers in Oncology, 10, 394.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, J., Guo, M., Zhou, X., Ding, Z., Chen, X., Jiao, Y., et al. (2020). Angiogenesis related gene expression significantly associated with the prognostic role of an urothelial bladder carcinoma. Translational Andrology and Urology, 9(5), 2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang, C., Worley, B. L., Phaëton, R., & Hempel, N. (2020). Extracellular glutathione peroxidase GPx3 and its role in cancer. Cancers (Basel), 12(8), 2197.

    Article  CAS  PubMed  Google Scholar 

  26. Reszka, E., Lesicka, M., Wieczorek, E., Jabłońska, E., Janasik, B., Stępnik, M., et al. (2020). Dysregulation of redox status in urinary bladder cancer patients. Cancers (Basel), 12(5), 1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, S., Liu, R., Yuan, K., Yi, T., Zhao, X., Huang, C., et al. (2013). Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis. Mass Spectrometry Reviews, 32(4), 267–311.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, L., Lv, B., Shi, X., & Gao, G. (2020). High expression of N-acetylgalactosaminyltransferase 1 (GALNT1) associated with invasion, metastasis, and proliferation in osteosarcoma. Medical Science Monitor, 26, e927837-1.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez, A., Loizaga, A., Arceo, R., Lacasa, I., Rabade, A., Zorroza, K., et al. (2014). A pilot study on the potential of RNA-associated to urinary vesicles as a suitable non-invasive source for diagnostic purposes in bladder cancer. Cancers (Basel), 6(1), 179–92.

    Article  PubMed  Google Scholar 

  30. Urabe, F., Kimura, T., Ito, K., Yamamoto, Y., Tsuzuki, S., Miki, J., et al. (2021). Urinary extracellular vesicles: A rising star in bladder cancer management. Translational Andrology and Urology, 10(4), 1878.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ruan, H., Wang, T., Yang, C., Jin, G., Gu, D., Deng, X., et al. (2016). Co-expression of LASS2 and TGF-β1 predicts poor prognosis in hepatocellular carcinoma. Scientific Reports, 6(1), 1–10.

    Article  Google Scholar 

  32. Wang, H., Wang, J., Zuo, Y., Ding, M., Yan, R., Yang, D., et al. (2012). Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma. Medical Oncology, 29(3), 1921–7.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, H., Zuo, Y., Ding, M., Ke, C., Yan, R., Zhan, H., et al. (2017). LASS2 inhibits growth and invasion of bladder cancer by regulating ATPase activity. Oncology Letters, 13(2), 661–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RR: funding acquisition, in silico and in vivo experiments, software, data analysis. HW: investigation, data curation, formal analysis. LX: methodology, project administration; SM: conceptualization, editing the manuscript. XY: funding, project administration, supervision drafts the manuscript.

Corresponding author

Correspondence to Xiaofeng Yang.

Ethics declarations

Ethical Approval

This study involved animals and ethics approved by the Department of Urology, Third Hospital of Shanxi Medical University Hospital, China, with ethics number YXLL-2021-066.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1

Tissue specificity of differentially expressed genes. A) GALNT1, B) ECM1, C) CERS2 and D) GPX3. (PNG 152 kb)

High resolution image (TIF 6963 kb)

Figure S2

Normalized expression of selected differential marker genes (CRYAB, ALDOB, IGFBP7, RHCG and TMEM176A) in Bladder cancer. A) mRNA expression pattern of CRYAB, ALDOB, IGFBP7, RHCG and TMEM176A marker genes (as a box-whisker plot) in normal and primary tumor samples. B) Expression pattern of the top marker genes based on tumor subgroups based on race. (PNG 49 kb)

High resolution image (TIF 6399 kb)

Figure S3

A) Molecular alterations for top differential expressed genes. B) Copy number variations of the DEGs. (PNG 93 kb)

High resolution image (TIF 7262 kb)

Figure S4

mRNA expression profile in bladder cancer and other cancer types. Pan cancer gene expression profile of A) CRYAB, B) ALDOB, C) IGFBP7, and D) TMEM176A. (PNG 69 kb)

High resolution image (TIF 6413 kb)

Figure S5

Epigenetic analysis of marker genes in BLCA. A) Methylation pattern of the top marker genes (CRYAB, IGFBP7, ALDOB and TMEM176A) in normal and primary tumor samples. B) Expression pattern of the CRYAB, IGFBP7, ALDOB and TMEM176A marker genes based on tumor subgroups based on race. (PNG 46 kb)

High resolution image (TIF 6389 kb)

Figure S6

Survival analysis of marker genes in BLCA. A) The Kaplan–Meier plotters based on bladder cancer datasets showed patients with high CRYAB expression have poor overall survival, B) IGFBP7, C) ALDOB and D) TMEM176A. (PNG 47 kb)

High resolution image (TIF 6320 kb)

Table S1

Supplementary Material S1 (3.19 MB xls)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, R., Wang, H., Xie, L. et al. Identify Potential Urine Biomarkers for Bladder Cancer Prognosis Using NGS Data Analysis and Experimental Validation. Appl Biochem Biotechnol 195, 2947–2964 (2023). https://doi.org/10.1007/s12010-022-04234-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04234-7

Keywords

Navigation