Skip to main content
Log in

Antibacterial Potential of 2-(-(2-Hydroxyphenyl)-methylidene)-amino)nicotinic Acid: Experimental, DFT Studies, and Molecular Docking Approach

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The problems associated with antibacterial drug discovery have kept the model of antibacterial drug to an extraordinary low level. Humans carry millions of bacteria; some species of bacteria can cause infectious disease, while some are pathogenic. Infectious bacteria which can reproduce quickly in the body can cause diseases such as tuberculosis, cholera, pneumonia, and typhoid, thus arises an urgent need to develop new drugs. Herein, 2-{[(2-hydroxyphenyl)methylidene]amino}nicotinic acid was synthesized from the condensation of o-phenylenediamine and 5-nitrosalicaldehyde followed by detailed characterization by ultraviolet–visible spectroscopy, vibrational studies FT-IR, nuclear magnetic resonance (1H-NMR, 13C-NMR), and gas chromatography coupled with mass spectroscopy (GC–MS). The complex synthesized was screened against selected microbes in order to establish their potential antimicrobial activity using selected known drugs as reference. From the results obtained, the Schiff base exhibited antimicrobial activity against all the tested microorganisms except Candida albicans isolate, which exhibited zero diameter zone of inhibition. The theoretical investigations of the synthesized compounds were computed using density functional theory (DFT) at the B3LYP/6–311 +  + G(d, p) level of theory and in silico molecular docking simulation. By comparing binding affinity of the studied compound and the standard drug (ampicillin), the studied compound docked against bacterial protein showed a high binding affinity for E. coli 6.6 kcal/mol and makes it effective as an antibacterial agent for E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data are available in the manuscript and associated supporting information.

References

  1. Fasiuddin, G. S., Khan, F. L. A., Muthu, S., Irfan, A., & Javed, S. (2022). Synthesis, spectral property, IEF-PCM solvation, anti-microbial evaluation and molecular docking studies of 6 amino-2-(4 nitrophenyl)-1H-benzimidazole. Journal of Molecular Liquids, 352, 118756.

    Article  CAS  Google Scholar 

  2. Gehring, J., Trepka, B., Klinkenberg, N., Bronner, H., Schleheck, D., & Polarz, S. (2016). Sunlight-triggered nanoparticle synergy: Teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity. Journal of the American Chemical Society, 138, 3076–30843.

    Article  PubMed  CAS  Google Scholar 

  3. Priya, M. K., Jonathan, D. R., Muthu, S., Shirmila, D. A., Hemalatha, J., & Usha, G. (2022). Structural examination, theoretical calculations, and pharmaceutical scanning of a new tetralone based chalcone derivative. Journal of Molecular Structure, 1253, 132296.

    Article  CAS  Google Scholar 

  4. Lee, W. J., & Hase, K. (2014). Gut microbiota-generated metabolites in animal health and disease. Nature Chemical Biology, 10, 416–424.

    Article  PubMed  CAS  Google Scholar 

  5. Blum, R., 2015. Vitamins, 11. Niacin (nicotinic acid, nicotinamide), in: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim,pp. 1–9.

  6. Fasiuddin, G. S., Khan, F. L. A., Sakthivel, S., Muthu, S., & Irfan, A. (2022). Synthesis, spectroscopic, molecular docking and inhibitory activity of 6-bromo-2-(4-chlorophenyl)-1H-benzimidazole-a DFT approach. Journal of Molecular Structure, 1261, 132815.

    Article  CAS  Google Scholar 

  7. K. Li, G.S.M. Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-L. Kwong, C.- M. Che, Chem. Sci. 7 (2016) 1653–1673.

  8. Wei, K., Louis, H., Emori, W., Idante, P. S., Agwamba, E. C., Cheng, C. R., & Unimuke, T. O. (2022). Antispasmodic activity of carnosic acid extracted from rosmarinus officinalis: Isolation, spectroscopic characterization, DFT studies, and in silico molecular docking investigations. Journal of Molecular Structure, 1260, 132795.

    Article  CAS  Google Scholar 

  9. Janani, S., Rajagopal, H., Muthu, S., Javed, S., & Irfan, A. (2022). Structural, electronic properties (different solvents), chemical reactivity, ELF, LOL, spectroscopic insights, molecular docking and in vitro anticancer activity studies on methyl (4-nitro-1-imidazolyl) acetate. Journal of the Indian Chemical Society, 99(5), 100438.

    Article  CAS  Google Scholar 

  10. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Fox, D. J. (2016). Gaussian 16, revision C. 01.

  11. Dennington, R., Keith, T. A., &Millam, J. M. (2016). GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA.HyperChem, T. (2001). HyperChem 8.07, HyperChem Professional Program. Gainesville, Hypercube.

  12. HyperChem, T. (2001). HyperChem 8.07, HyperChem Professional Program. Gainesville, Hypercube.

  13. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1), 1–17.

    Article  Google Scholar 

  14. Thomsen, R., & Christensen, M. H. (2006). Mol-Dock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49, 3315–3321.

    Article  PubMed  CAS  Google Scholar 

  15. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrodinger, LLC.

  16. M.H. Jamroz, Vibrational energy distribution analysis: VEDA 4 Program, Warsaw, 2004.

  17. Pulay, P., Forgasi, G., Pongor, G., Boggs, J. E., & Vargha, A. (1983). Journal of the American Chemical Society, 105, 7037–7047.

    Article  CAS  Google Scholar 

  18. M.H. Jamroz, J.Cz. Dobrowolski, R. Brzozowski, J. Mol. Struct. 787 (2006)172–183.

  19. Unimuke, T. O., Louis, H., Eno, E. A., Agwamba, E. C., & Adeyinka, A. S. (2022). Meta-hybrid density functional theory prediction of the reactivity, stability, and IGM of azepane, oxepane, thiepane, and halogenated cycloheptane. ACS Omega.

  20. Erickson, H. P. (1995). FtsZ, a prokaryotic homolog of tubulin? Cell, 80(3), 367–70.

    Article  PubMed  CAS  Google Scholar 

  21. Rizwana, B. F., Prasana, J. C., Abraham, C. S., & Muthu, S. (2018). Spectroscopic investigation, hirshfeld surface analysis and molecular docking studies on anti-viral drug entecavir. Journal of Molecular Structure, 1164, 447–458.

    Article  Google Scholar 

  22. Aayisha, S., Devi, T. R., Janani, S., Muthu, S., Raja, M., & Sevvanthi, S. (2019). DFT, molecular docking and experimental FT-IR, FT-Raman, NMR inquisitions on “4-chloro-N-(4, 5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methylpyrimidin-5-amine”: Alpha-2-imidazoline receptor agonist antihypertensive agent. Journal of Molecular Structure, 1186, 468–481.

    Article  CAS  Google Scholar 

  23. Seshadri, S., Gunasekaran, S., Muthu, S., Kumaresan, S., & Arunbalaji, R. (2007). Vibrational spectroscopy investigation using ab initio and density functional theory on flucytosine. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 38(11), 1523–1531.

    Article  CAS  Google Scholar 

  24. Louis, H., Ifediora, L. P., Enudi, O. C., Unimuke, T. O., Asogwa, F. C., & Moshood, Y. L. (2021). Evaluation of the excited state dynamics, photophysical properties, and the influence of donor substitution in a donor-π-acceptor system. Journal of Molecular Modeling, 27(10), 1–18.

    Article  Google Scholar 

  25. Obu, Q. S., Louis, H., Odey, J. O., Eko, I. J., Abdullahi, S., Ntui, T. N., &Offiong, O. E. (2021). Synthesis, spectra (FT-IR, NMR) investigations, DFT study, in silico ADMET and molecular docking analysis of 2-amino-4-(4-aminophenyl) thiophene-3-carbonitrile as a potential anti-tubercular agent. Journal of Molecular Structure, 130880.

  26. Louis, H., Guo, L. J., Zhu, S., Hussain, S., & He, T. (2019). Computational study on interactions between CO2 and (TiO2) n clusters at specific sites. Chinese Journal of Chemical Physics, 32(6), 674–686.

    Article  CAS  Google Scholar 

  27. Edim, M. M., Enudi, O. C., Asuquo, B. B., Louis, H., Bisong, E. A., Agwupuye, J. A., & Bassey, F. I. (2021). Aromaticity indices, electronic structural properties, and fuzzy atomic space investigations of naphthalene and its aza-derivatives. Heliyon, 7(2), e06138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bisong, E. A., Louis, H., Unimuke, T. O., Odey, J. O., Ubana, E. I., Edim, M. M., & Utsu, P. M. (2020). Vibrational, electronic, spectroscopic properties, and NBO analysis of p-xylene, 3, 6-difluoro-p-xylene, 3, 6-dichloro-p-xylene and 3, 6-dibromo-pxylene: DFT study. Heliyon, 6(12), e05783.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Udoikono, A. D., Louis, H., Eno, E. A., Agwamba, E. C., Unimuke, T. O., Igbalagh, A. T., & Adeyinka, A. S. (2022). Reactive azo compounds as a potential chemotherapy drugs in the treatment of malignant glioblastoma (GBM): Experimental and theoretical studies. Journal of Photochemistry and Photobiology, 10, 100116.

    Article  Google Scholar 

  30. Louis, H., Onyebuenyi, I. B., Odey, J. O., Igbalagh, A. T., Mbonu, M. T., Eno, E. A., & Offiong, O. E. (2021). Synthesis, characterization, and theoretical studies of the photovoltaic properties of novel reactive azonitrobenzaldehyde derivatives. RSC Advances, 11(45), 28433–28446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.L.: conceptualization, design, resources, and supervision. E.E.: analysis, project administrator, and validation. H.E. and A.O.: analysis, writing, validation, and proofreading. E.O. and M.K.: methodology and writing. I.O.: writing, editing, and manuscript draft. G.E.: resources and methodology.

Corresponding author

Correspondence to Hitler Louis.

Ethics declarations

Ethics Approval

N/A

Consent to Participate

N/A

Consent to Publish

N/A

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2027 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osigbemhe, I.G., Louis, H., Khan, E.M. et al. Antibacterial Potential of 2-(-(2-Hydroxyphenyl)-methylidene)-amino)nicotinic Acid: Experimental, DFT Studies, and Molecular Docking Approach. Appl Biochem Biotechnol 194, 5680–5701 (2022). https://doi.org/10.1007/s12010-022-04054-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04054-9

Keywords

Navigation