Skip to main content
Log in

LncRNA LINC00665 Promotes Ovarian Cancer Cell Proliferation and Inhibits Apoptosis via Targeting miR-181a-5p/FHDC

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Previous reports indicate that long intergenic non-coding RNA LINC00665 naturally occurred vital effects in various cancers. Herein, the role of LINC00665 in ovarian cancer progress was explored. We found that LINC00665 was upregulated in ovarian cancer cell lines. Besides, a series of assays including flow cytometry, wound-healing, transwell, cell counting Kit-8 (CCK-8), and EdU assay confirmed that the knockdown of LINC00665 could reduce the viability, proliferation, and migration of SKOV-3 and OVCAR-3 cells. Accumulating evidence indicates that many lncRNAs can function as endogenous miRNA sponges by competitively binding common miRNAs. In this study, the bioinformatics analysis suggests that LNC00665 specifically binds to miR-181a-5p. LINC00665 downregulated the miR-181a-5p in SKOV-3 and OVCAR-3 cells. The knockdown of miR-181a-5p evidently reverses the inhibitory effect of sh-LINC00662. Besides, FH2 domain containing 1 (FHDC1) has been proved to deed as an effective target of miR-181a-5p. The results reveal the knockdown of LINC00665 facilitates ovarian cancer via development by sponging miR-181a-5p and up-regulating FHDC1 expression. These may contribute to ovarian cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  2. Torre, L. A., Trabert, B., DeSantis, C. E., Miller, K. D., Samimi, G., Runowicz, C. D., Gaudet, M. M., Jemal, A., & Siegel, R. L. (2018). Ovarian cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 284–296.

    Google Scholar 

  3. Zhang, M. L., Peng, P., Wu, C. X., Gong, Y. M., Zhang, S. W., Chen, W. Q., & Bao, P. P. (2019). Report of breast cancer incidence and mortality in China registry regions, 2008–2012. Zhonghua Zhong Liu Za Zhi, 41, 315–320.

    CAS  PubMed  Google Scholar 

  4. Marth, C., Reimer, D., & Zeimet, A. G. (2017). Front-line therapy of advanced epithelial ovarian cancer: standard treatment. Ann Oncol, 28(Suppl 8), viii36–viii39.

    Article  CAS  Google Scholar 

  5. Qiu, M. T., Hu, J. W., Yin, R., & Xu, L. (2013). Long noncoding RNA: An emerging paradigm of cancer research. Tumour Biology, 34, 613–620.

    Article  CAS  Google Scholar 

  6. Lalevee, S., & Feil, R. (2015). Long noncoding RNAs in human disease: Emerging mechanisms and therapeutic strategies. Epigenomics, 7, 877–879.

    Article  CAS  Google Scholar 

  7. DiStefano, J. K. (2018). The Emerging Role of Long Noncoding RNAs in Human Disease. Methods in Molecular Biology, 1706, 91–110.

    Article  CAS  Google Scholar 

  8. Xue, M., Zhuo, Y., & Shan, B. (2017). MicroRNAs, Long Noncoding RNAs, and their functions in human disease. Methods in Molecular Biology, 1617, 1–25.

    Article  CAS  Google Scholar 

  9. Lv, P., Qiu, X., Gu, Y., Yang, X., Xu, X., & Yang, Y. (2019). Long non-coding RNA SNHG6 enhances cell proliferation, migration and invasion by regulating miR-26a-5p/MAPK6 in breast cancer. Biomedicine & Pharmacotherapy, 110, 294–301.

    Article  CAS  Google Scholar 

  10. Sun, X., Huang, T., Zhang, C., Zhang, S., Wang, Y., Zhang, Q., & Liu, Z. (2019). Long non-coding RNA LINC00968 reduces cell proliferation and migration and angiogenesis in breast cancer through up-regulation of PROX1 by reducing hsa-miR-423-5p. Cell Cycle, 18, 1908–1924.

    Article  CAS  Google Scholar 

  11. Jia, H., Wang, X., & Sun, Z. (2018). Exploring the molecular pathogenesis and biomarkers of high risk oral premalignant lesions on the basis of long noncoding RNA expression profiling by serial analysis of gene expression. European Journal of Cancer Prevention, 27, 370–378.

    Article  CAS  Google Scholar 

  12. Wen, D. Y., Lin, P., Pang, Y. Y., Chen, G., He, Y., Dang, Y. W., & Yang, H. (2018). Expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma using the cancer genome atlas, the gene expression omnibus, and quantitative real-time polymerase chain reaction. Medical Science Monitor, 24, 2786–2808.

    Article  CAS  Google Scholar 

  13. Cong, Z., Diao, Y., Xu, Y., Li, X., Jiang, Z., Shao, C., Ji, S., Shen, Y., De, W., & Qiang, Y. (2019). Long non-coding RNA linc00665 promotes lung adenocarcinoma progression and functions as ceRNA to regulate AKR1B10-ERK signaling by sponging miR-98. Cell Death & Disease, 10, 84.

    Article  Google Scholar 

  14. Adami, G. R., Tangney, C. C., Tang, J. L., Zhou, Y., Ghaffari, S., Naqib, A., Sinha, S., Green, S. J., & Schwartz, J. L. (2018). Effects of green tea on miRNA and microbiome of oral epithelium. Science and Reports, 8, 5873.

    Article  Google Scholar 

  15. Rodriguez, L. G., Wu, X., & Guan, J. L. (2005). Wound-healing assay. Methods in Molecular Biology, 294, 23–29.

    PubMed  Google Scholar 

  16. Marshall, J. (2011). Transwell((R)) invasion assays. Methods in Molecular Biology, 769, 97–110.

    Article  CAS  Google Scholar 

  17. Li, Q., Zhang, J., Zhou, J., Yang, B., Liu, P., Cao, L., Jing, L., & Liu, H. (2018). lncRNAs are novel biomarkers for differentiating between cisplatin-resistant and cisplatin-sensitive ovarian cancer. Oncology Letters, 15, 8363–8370.

    PubMed  PubMed Central  Google Scholar 

  18. Shen, W., Xie, X., Liu, M., & Wang, L. (2020). Diagnostic Value of lncRNA ROR in Differentiating Ovarian Cancer Patients. Clinical laboratory, 66.

  19. Shi, Y., Gao, S., Zheng, Y., Yao, M., & Ruan, F. (2019). LncRNA CASC15 Functions As An Unfavorable Predictor Of Ovarian Cancer Prognosis And Inhibits Tumor Progression Through Regulation Of miR-221/ARID1A Axis. Oncotargets and Therapy, 12, 8725–8736.

    Article  CAS  Google Scholar 

  20. Li, Y., Kuscu, C., Banach, A., Zhang, Q., Pulkoski-Gross, A., Kim, D., Liu, J., Roth, E., Li, E., Shroyer, K. R., Denoya, P. I., Zhu, X., Chen, L., & Cao, J. (2015). miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Research, 75, 2674–2685.

    Article  CAS  Google Scholar 

  21. Qi, H., Xiao, Z., & Wang, Y. (2019). Long non-coding RNA LINC00665 gastric cancer tumorigenesis by regulation miR-149-3p/RNF2 axis. Oncotargets and Therapy, 12, 6981–6990.

    Article  CAS  Google Scholar 

  22. Chen, W., Yu, Z., Huang, W., Yang, Y., Wang, F., & Huang, H. (2020). LncRNA LINC00665 promotes prostate cancer progression via miR-1224-5p/SND1 Axis. Oncotargets and Therapy, 13, 2527–2535.

    Article  CAS  Google Scholar 

  23. Petrillo, M., Zannoni, G. F., Beltrame, L., Martinelli, E., DiFeo, A., Paracchini, L., Craparotta, I., Mannarino, L., Vizzielli, G., Scambia, G., D’Incalci, M., Romualdi, C., & Marchini, S. (2016). Identification of high-grade serous ovarian cancer miRNA species associated with survival and drug response in patients receiving neoadjuvant chemotherapy: A retrospective longitudinal analysis using matched tumor biopsies. Annals of Oncology, 27, 625–634.

    Article  CAS  Google Scholar 

  24. Copeland, S. J., Thurston, S. F., & Copeland, J. W. (2016). Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1. Molecular Biology of the Cell, 27, 260–276.

    Article  CAS  Google Scholar 

  25. Chen, H. Q., Zhao, J., Li, Y., He, L. X., Huang, Y. J., Shu, W. Q., Cao, J., Liu, W. B., & Liu, J. Y. (2018). Gene expression network regulated by DNA methylation and microRNA during microcystin-leucine arginine induced malignant transformation in human hepatocyte L02 cells. Toxicology Letters, 289, 42–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.W conducted most of the experiments. J.W. interpreted and analyzed the data. Y.W wrote the first draft of the article. J.L. finalized the manuscript. J.W. conceived the study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinhua Wang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Y., Lu, J. et al. LncRNA LINC00665 Promotes Ovarian Cancer Cell Proliferation and Inhibits Apoptosis via Targeting miR-181a-5p/FHDC. Appl Biochem Biotechnol 194, 3819–3832 (2022). https://doi.org/10.1007/s12010-022-03943-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03943-3

Keywords

Navigation