Skip to main content
Log in

Encapsulation of Nitrilase in Zeolitic Imidazolate Framework-90 to Improve Its Stability and Reusability

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, nitrilase (Nit) was immobilized in zeolite imidazole framework-90 (ZIF-90) by one-pot biomimetic mineralization strategy. The structure, morphology and functional groups of ZIF-90 and immobilized enzyme Nit@ZIF-90 were characterized by scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). Circular dichroism (CD) proved that the immobilized method of encapsulation in ZIF-90 could effectively maintain the intrinsic conformation of Nit. Meanwhile, the stability and reusability of Nit@ZIF-90 were systematically evaluated. Compared with the free enzyme, the thermal, pH and organic solvents stability of Nit@ZIF-90 were significantly increased. Further, Nit@ZIF-90 exhibited better reusability during the hydrolysis of acrylonitrile and retained 48.34% of the initial activity after 10 cycles. Besides, the Ni@ZIF-90 had preferable storage stability, which showed a high degree of residual activity (more than 64 %) after storage at 4 °C for 7 d. The improved stability and reusability of the Nit@ZIF-90 implied that it could be used as a potential effective biocatalyst for hydrolysis of nitrile compounds in industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statements

All data generated or analyzed during this study are included in this published article.

References

  1. Gupta, N., Balomajumder, C., & Agarwal, V. K. (2010). Enzymatic mechanism and biochemistry for cyanide degradation: A review. Journal of Hazardous Materials, 176, 1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Bhalla, T. C., Kumar, V., Kumar, V., Thakur, N., & Savitri. (2018). Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Applied Biochemistry and Biotechnology, 185, 925–946.

    Article  CAS  PubMed  Google Scholar 

  3. Rucka, L., Chmatal, M., Kulik, N., Petraskova, L., Pelantova, H., Novotny, P., Prihodova, R., Patek, M., & Martinkova, L. (2019). Genetic and Functional Diversity of Nitrilases in Agaricomycotina. International Journal of Molecular Sciences, 20, 5990.

    Article  CAS  PubMed Central  Google Scholar 

  4. Gong, J. S., Lu, Z. M., Li, H., Shi, J. S., Zhou, Z. M., & Xu, Z. H. (2012). Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microbial Cell Factories, 11, 1–18.

    Article  CAS  Google Scholar 

  5. Nigam, V. K., Arfi, T., Kumar, V., & Shukla, P. (2017). Bioengineering of Nitrilases Towards Its Use as Green Catalyst: Applications and Perspectives. Indian Journal of Microbiology, 57, 131–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vesela, A. B., Franc, M., Pelantova, H., Kubac, D., Vejvoda, V., Sulc, M., Bhalla, T. C., Mackova, M., Lovecka, P., Janu, P., Demnerova, K., & Martinkova, L. (2010). Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation, 21, 761–770.

    Article  CAS  PubMed  Google Scholar 

  7. Roszak, M., Jablonska, J., Stachurska, X., Dubrowska, K., Kajdanowicz, J., Golebiewska, M., Kiepas-Kokot, A., Osinska, B., Augustyniak, A., & Karakulska, J. (2021). Development of an Autochthonous Microbial Consortium for Enhanced Bioremediation of PAH-Contaminated Soil. International Journal of Molecular Sciences, 22, 162–177.

    Article  CAS  Google Scholar 

  8. Cui, J. D., Cui, L. L., Jia, S. R., Su, Z. G., & Zhang, S. P. (2016). Hybrid Cross-Linked Lipase Aggregates with Magnetic Nanoparticles: A Robust and Recyclable Biocatalysis for the Epoxidation of Oleic Acid. Journal of Agricultural and Food Chemistry, 64, 7179–7187.

    Article  CAS  PubMed  Google Scholar 

  9. Cui, J. D., Zhao, Y. M., Liu, R. L., Zhong, C., & Jia, S. R. (2016). Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Scientific Reports, 6, 27928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui, J. D., Ren, S. Z., Lin, T., Feng, Y. X., & Jia, S. R. (2018). Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere. Chemical Engineering Journal, 343, 629–637.

    Article  CAS  Google Scholar 

  11. Huang, S. M., Kou, X. X., Shen, J., Chen, G. S., & Ouyang, G. F. (2020). "Armor-Plating" Enzymes with Metal-Organic Frameworks (MOFs). Angewandte Chemie (International Ed. in English), 59, 8786–8798.

    Article  CAS  Google Scholar 

  12. Liang, K., Ricco, R., Doherty, C. M., Styles, M. J., Bell, S., Kirby, N., Mudie, S., Haylock, D., Hill, A. J., Doonan, C. J., & Falcaro, P. (2015). Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 6, 1–8.

    Article  Google Scholar 

  13. Wang, Q., & Astruc, D. (2020). State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 120, 1438–1511.

    Article  CAS  PubMed  Google Scholar 

  14. Lu, G., Li, S. Z., Guo, Z., Farha, O. K., Hauser, B. G., Qi, X. Y., Wang, Y., Wang, X., Han, S. Y., Liu, X. G., DuChene, J. S., Zhang, H., Zhang, Q. C., Chen, X. D., Ma, J., Loo, S. C., Wei, W. D., Yang, Y. H., Hupp, J. T., & Huo, F. W. (2012). Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 4, 310–316.

    Article  CAS  PubMed  Google Scholar 

  15. Lyu, F., Zhang, Y., Zare, R. N., Ge, J., & Liu, Z. (2014). One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Letters, 14, 5761–5765.

    Article  CAS  PubMed  Google Scholar 

  16. Cui, J. D., Feng, Y. X., Lin, T., Tan, Z. L., Zhong, C., & Jia, S. (2017). Mesoporous Metal-Organic Framework with Well-Defined Cruciate Flower-Like Morphology for Enzyme Immobilization. ACS Applied Materials & Interfaces, 9, 10587–10594.

    Article  CAS  Google Scholar 

  17. Du, Y. J., Jia, X. T., Zhong, L., Jiao, Y., Zhang, Z. J., Wang, Z. Y., Feng, Y. X., Bilal, M., Cui, J. D., & Jia, S. R. (2022). Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites. Coordination Chemistry Reviews, 454, 214327.

    Article  CAS  Google Scholar 

  18. Zhou, J., Li, M. H., Hou, Y. H., Luo, Z., Chen, Q. F., Cao, H. X., Huo, R. L., Xue, C. C., Sutrisno, L., Hao, L., Cao, Y., Ran, H. T., Lu, L., Li, K., & Cai, K. Y. (2018). Engineering of a Nanosized Biocatalyst for Combined Tumor Starvation and Low-Temperature Photothermal Therapy. ACS Nano, 12, 2858–2872.

    Article  CAS  PubMed  Google Scholar 

  19. Lin, H., Chen, Y., & Shi, J. L. (2018). Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chemical Society Reviews, 47, 1938–1958.

    Article  CAS  PubMed  Google Scholar 

  20. Gao, X., Ding, Y., Sheng, Y. D., Hu, M. C., Zhai, Q. G., Li, S. N., Jiang, Y. C., & Chen, Y. (2019). Enzyme Immobilization in MOF-derived Porous NiO with Hierarchical Structure: An Efficient and Stable Enzymatic Reactor. ChemCatChem, 11, 2828–2836.

    Article  CAS  Google Scholar 

  21. Gkaniatsou, E., Sicard, C., Ricoux, R., Benahmed, L., Bourdreux, F., Zhang, Q., Serre, C., Mahy, J. P., & Steunou, N. (2018). Enzyme Encapsulation in Mesoporous Metal-Organic Frameworks for Selective Biodegradation of Harmful Dye Molecules. Angewandte Chemie, International Edition, 57, 16141–16146.

    Article  CAS  Google Scholar 

  22. Chen, G. S., Kou, X. X., Huang, S. M., Tong, L. J., Shen, Y. J., Zhu, W. S., Zhu, F., & Ouyang, G. F. (2020). Modulating the Biofunctionality of Metal-Organic-Framework-Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie (International Ed. in English), 59, 2867–2874.

    Article  CAS  Google Scholar 

  23. Chen, G. S., Huang, S. M., Kou, X. X., Wei, S. B., Huang, S. Y., Jiang, S. Q., Shen, J., Zhu, F., & Ouyang, G. F. (2019). A Convenient and Versatile Amino-Acid-Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal-Organic Frameworks. Angewandte Chemie, International Edition, 58, 1463–1467.

    Article  CAS  Google Scholar 

  24. Lian, X. Z., & Zhou, H. C. (2018). High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Abstracts of Papers of the American Chemical Society, 8, 2075.

    Google Scholar 

  25. Feng, Y. X., Zhong, L., Bilal, M., Tan, Z. L., Hou, Y., Jia, S. R., & Cui, J. D. (2018). Enzymes@ZIF-8 Nanocomposites with Protection Nanocoating: Stability and Acid-Resistant Evaluation. Polymers (Basel), 11, 27.

    Article  PubMed Central  CAS  Google Scholar 

  26. Nadar, S. S., Vaidya, L., & Rathod, V. K. (2020). Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 149, 861–876.

    Article  CAS  PubMed  Google Scholar 

  27. Liang, S., Wu, X. L., Xiong, J., Zong, M. H., & Lou, W. Y. (2020). Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coordination Chemistry Reviews, 406, 213149.

    Article  CAS  Google Scholar 

  28. Liang, X., Li, Q., Shi, Z. Y., Bai, S. W., & Li, Q. S. (2020). Immobilization of urease in metal–organic frameworks via biomimetic mineralization and its application in urea degradation. Chinese Journal of Chemical Engineering, 28, 2173–2180.

    Article  CAS  Google Scholar 

  29. Wang, Y. X., Zhang, N. N., Tan, D. M., Qi, Z. H., & Wu, C. Z. (2020). Facile Synthesis of Enzyme-Embedded Metal-Organic Frameworks for Size-Selective Biocatalysis in Organic Solvent. Frontiers in Bioengineering and Biotechnology, 8, 714.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li, P., Moon, S. Y., Guelta, M. A., Lin, L., Gomez Gualdron, D. A., Snurr, R. Q., Harvey, S. P., Hupp, J. T., & Farha, O. K. (2016). Nanosizing a Metal-Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 10, 9174–9182.

    Article  CAS  PubMed  Google Scholar 

  31. Li, S., Dharmarwardana, M., Welch, R. P., Benjamin, C. E., Shamir, A. M., Nielsen, S. O., & Gassensmith, J. J. (2018). Investigation of Controlled Growth of Metal-Organic Frameworks on Anisotropic Virus Particles. ACS Applied Materials & Interfaces, 10, 18161–18169.

    Article  CAS  Google Scholar 

  32. Lian, X. Z., Fang, Y., Joseph, E., Wang, Q., Li, J. L., Banerjee, S., Lollar, C., Wang, X., & Zhou, H. C. (2017). Enzyme-MOF (metal-organic framework) composites. Chemical Society Reviews, 46, 3386–3401.

    Article  CAS  PubMed  Google Scholar 

  33. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R. D., Uribe-Romo, F. J., Chae, H. K., O’Keeff, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS, 103, 10186–10191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang, W., Xu, H., Carraro, F., Maddigan, N. K., Li, Q., Bell, S. G., Huang, D. M., Tarzia, A., Solomon, M. B., Amenitsch, H., Vaccari, L., Sumby, C. J., Falcaro, P., & Doonan, C. J. (2019). Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal-Organic Frameworks. Journal of the American Chemical Society, 141, 2348–2355.

    Article  CAS  PubMed  Google Scholar 

  35. Taghizadeh, T., Ameri, A., Talebian-Kiakalaieh, A., Mojtabavi, S., Ameri, A., Forootanfar, H., Tarighi, S., & Faramarzi, M. A. (2021). Lipase@zeolitic imidazolate framework ZIF-90: A highly stable and recyclable biocatalyst for the synthesis of fruity banana flavour. International Journal of Biological Macromolecules, 166, 1301–1311.

    Article  CAS  PubMed  Google Scholar 

  36. Shieh, F. K., Wang, S. C., Leo, S. Y., & Wu, K. C. (2013). Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry, 19, 11139–11142.

    Article  CAS  PubMed  Google Scholar 

  37. Zou, R. F., Gong, Q. Y., Shi, Z. Z., Zheng, J. P., Xing, J., Liu, C., Jiang, Z. Q., & Wu, A. G. (2020). A ZIF-90 nanoplatform loaded with an enzyme-responsive organic small-molecule probe for imaging the hypoxia status of tumor cells. Nanoscale, 12, 14870–14881.

    Article  CAS  PubMed  Google Scholar 

  38. Zou, Y. L., Liu, X. Y., & Zhang, H. X. (2021). A dual enzyme-containing microreactor for consecutive digestion based on hydrophilic ZIF-90 with size-selective sheltering. Colloids and Surfaces. B, Biointerfaces, 197, 111422.

    Article  CAS  PubMed  Google Scholar 

  39. Luo, H., Fan, L., Chang, Y. H., Ma, J. W., Yu, H. M., & Shen, Z. Y. (2010). Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Applied Biochemistry and Biotechnology, 160, 393–400.

    Article  CAS  PubMed  Google Scholar 

  40. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  41. Xie, W. L., & Wan, F. (2019). Guanidine post-functionalized crystalline ZIF-90 frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification. Energy Conversion and Management, 198, 111922.

    Article  CAS  Google Scholar 

  42. Bhattacharjee, S., Lee, Y. R., & Ahn, W. S. (2015). Post-synthesis functionalization of a zeolitic imidazolate structure ZIF-90: a study on removal of Hg(II) from water and epoxidation of alkenes. Crystengcomm, 17, 2575–2582.

    Article  CAS  Google Scholar 

  43. Nadar, S. S., & Rathod, V. K. (2020). Immobilization of proline activated lipase within metal organic framework (MOF). International Journal of Biological Macromolecules, 152, 1108–1112.

    Article  PubMed  CAS  Google Scholar 

  44. Wu, X. L., Yang, C., & Ge, J. (2017). Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and Bioprocessing, 4, 1–8.

    Article  Google Scholar 

  45. Shieh, F. K., Wang, S. C., Yen, C. I., Wu, C. C., Dutta, S., Chou, L. Y., Morabito, J. V., Hu, P., Hsu, M. H., Wu, K. C., & Tsung, C. K. (2015). Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. Journal of the American Chemical Society, 137, 4276–4279.

    Article  CAS  PubMed  Google Scholar 

  46. Shi, J. F., Wang, X. L., Zhang, S. H., Tang, L., & Jiang, Z. Y. (2016). Enzyme-conjugated ZIF-8 particles as efficient and stable Pickering interfacial biocatalysts for biphasic biocatalysis. Journal of Materials Chemistry B, 4, 2654–2661.

    Article  CAS  PubMed  Google Scholar 

  47. Nadar, S. S., & Rathod, V. K. (2017). Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-MOF) with enhanced stability. International Journal of Biological Macromolecules, 95, 511–519.

    Article  CAS  PubMed  Google Scholar 

  48. Vaidya, L. B., Nadar, S. S., & Rathod, V. K. (2020). Entrapment of surfactant modified lipase within zeolitic imidazolate framework (ZIF)-8. International Journal of Biological Macromolecules, 146, 678–686.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22078019).

Author information

Authors and Affiliations

Authors

Contributions

Hui Peng, Yanhong Chang and Hui Luo contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hui Peng, Wenge Dong, Qiwei Chen, Haiyan Song, Hongxu Sun and Ren Li. The first draft of the manuscript was written by Hui Peng, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yanhong Chang or Hui Luo.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Dong, W., Chen, Q. et al. Encapsulation of Nitrilase in Zeolitic Imidazolate Framework-90 to Improve Its Stability and Reusability. Appl Biochem Biotechnol 194, 3527–3540 (2022). https://doi.org/10.1007/s12010-022-03890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03890-z

Keywords

Navigation