Skip to main content

Advertisement

Log in

Isolation and Characterization of Antimicrobial Peptides Isolated from Fagonia bruguieri

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The majority of pathogenic microorganisms have developed resistance to commercial antibiotics. It causes the risk of illness relapse with current antimicrobial therapy regimens; additional and/or different antibacterial drugs are needed to treat diseases caused by these pathogenic microorganisms. The applied analysis in the present study was purification and characterization of plant peptides isolated from the leaves of Fagonia bruguieri as well as their antibacterial activities against Gram-positive bacteria, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, and methicillin-resistant Staphylococcus aureus, in addition to Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa. The minimum inhibitory concentration for the isolated peptide ranges from 25 to 62.5 mg/mL. The methanolic solvent was used for the extraction followed by reversed-phase high-performance liquid chromatography for purification of peptides. Eventually, the peptide characterization and identification were also determined by MALDI-TOF/TOF and SEM analysis. This study paves a way to the effective antimicrobials from the plant resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Crossley, K. B., Archer, G., Jefferson, K., & Fowler, V. (2009). Staphylococci in human disease: Wiley Online Library.

  2. Nordin, N., Syam Mohan, N. M. H., Zajmi, A., Yazid, N. S. M., Rahman, M. A., OMER, F. A. A., & Omar, H. (2014). Antioxidant, anticancer and antimicrobial activities of methanolic extracts from Enicosanthellum pulchrum (King) Heusden. Sains Malaysiana, 43(10), 1515-1521.

  3. Lowy, F. D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339(8), 520–532.

    Article  CAS  Google Scholar 

  4. Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411(6839), 843–847.

    Article  CAS  Google Scholar 

  5. Zeitler, B., Bernhard, A., Meyer, H., Sattler, M., Koop, H.-U., & Lindermayr, C. (2013). Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Molecular Biology, 81(3), 259–272. https://doi.org/10.1007/s11103-012-9996-9

    Article  CAS  PubMed  Google Scholar 

  6. Bolintineanu, D. S., & Kaznessis, Y. N. (2011). Computational studies of protegrin antimicrobial peptides: A review. Peptides, 32(1), 188–201. https://doi.org/10.1016/j.peptides.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  7. Amiche, M., & Galanth, C. (2011). Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Current pharmaceutical biotechnology, 12(8), 1184–1193. https://doi.org/10.2174/138920111796117319

    Article  CAS  PubMed  Google Scholar 

  8. Said, S. A., Al-Saadi, S. H. A., Al-Abri, A. R., Akhtar, M. S., Weli, A. M., & Al-Riyami, Q. (2014). Cytotoxic properties of some herbal plants in Oman. Journal of Taibah University for Science, 8(2), 71–74. https://doi.org/10.1016/j.jtusci.2014.01.004

    Article  Google Scholar 

  9. Abdel-Kader M.S., Omar A.A., Abdel-Salam N.A., Stermitz F.R.(1993). Erythroxan diterpenes and flavonoids from Fagonia bruguieri. Phytochemistry, 33, 718–720. https://doi.org/10.1016/0031-9422(93)85482-7

  10. Al-Dhafri, K. S., Farooq, S. A., Eltayeb, E., Bahry, S. N. (2014). Antimicrobial compounds from ethano-medicinal plants of Oman. In Biotechnology and Conservation of Species from Arid Regions (pp. 311–326). Nova Science Publishers, Inc..

  11. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  12. Rajauria, G., Foley, B., & Abu-Ghannam, N. (2016). Identification and characterization of phenolic antioxidant compounds from brown Irish seaweed Himanthalia elongata using LC-DAD–ESI-MS/MS. Innovative Food Science & Emerging Technologies, 37, 261–268. https://doi.org/10.1016/j.ifset.2016.02.005

    Article  CAS  Google Scholar 

  13. Goh, H. F., & Philip, K. (2015). Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS ONE, 10(10), e0140434. https://doi.org/10.1371/journal.pone.0140434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175.

    Article  CAS  Google Scholar 

  15. Schägger, H. (2006). Tricine–sds-page. Nature Protocols, 1(1), 16–22.

    Article  Google Scholar 

  16. Cosgrove, S., Carroll, K., & Perl, T. (2004). Staphylococcus aureus with reduced susceptibility to vancomycin. Clinical infectious diseases, 39(4), 539–545. https://doi.org/10.1086/422458

    Article  CAS  PubMed  Google Scholar 

  17. Byfield, F. J., Kowalski, M., Cruz, K., Leszczyńska, K., Namiot, A., Savage, P. B., Bucki, R., & Janmey, P. A. (2011). Cathelicidin LL-37 increases lung epithelial cell stiffness, decreases transepithelial permeability, and prevents epithelial invasion by Pseudomonas aeruginosa. The Journal of Immunology, 187(12), 6402–6409. https://doi.org/10.4049/jimmunol.1102185

    Article  CAS  PubMed  Google Scholar 

  18. Stover, C., Pham, X., Erwin, A., Mizoguchi, S., Warrener, P., Hickey, M., Brinkman, F., Hufnagle, W., Kowalik, D., & Lagrou, M. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959–996.

    Article  CAS  Google Scholar 

  19. Hancock, R. E., & Chapple, D. S. (1999). Peptide antibiotics. Antimicrobial Agents and Chemotherapy, 43(6), 1317–1323. https://doi.org/10.1016/S0140-6736(97)80051-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Franck, J., Arafah, K., Elayed, M., Bonnel, D., Vergara, D., Jacquet, A., Vinatier, D., Wisztorski, M., Day, R., & Fournier, I. (2009). MALDI imaging mass spectrometry state of the art technology in clinical proteomics. Molecular & Cellular Proteomics, 8(9), 2023–2033. https://doi.org/10.1074/mcp.R800016-MCP200

    Article  CAS  Google Scholar 

  21. Shai, Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1462(1), 55–70. https://doi.org/10.1016/S0005-2736(99)00200-X

  22. Shai, Y. (2002). Mode of action of membrane active antimicrobial peptides. Peptide Science, 66(4), 236–248. https://doi.org/10.1002/bip.10260

    Article  CAS  PubMed  Google Scholar 

  23. Bisseling, T. (1999). The role of plant peptides in intercellular signalling. Current Opinion in Plant Biology, 2(5), 365–368. https://doi.org/10.1016/S1369-5266(99)00006-0

    Article  CAS  PubMed  Google Scholar 

  24. Caaveiro, J. M. M., Molina, A., González-Mañas, J. M., Rodrı́guez-Palenzuela, P., Garcı́a-Olmedo, F., & Goñi, F. M. (1997). Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Letters, 410(2–3), 338-342. https://doi.org/10.1016/S0014-5793(97)00613-3

  25. Burri, S. C., Ekholm, A., Håkansson, Å., Tornberg, E., & Rumpunen, K. (2017). Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used. Journal of functional foods, 38, 119–127. https://doi.org/10.1016/j.jff.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 46(10), 4113–4117. https://doi.org/10.1021/jf9801973

    Article  CAS  Google Scholar 

  27. Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in plant science, 2(4), 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  28. Amarowicz, R., Naczk, M., & Shahidi, F. (2000). Antioxidant activity of various fractions of non-tannin phenolics of canola hulls. Journal of Agricultural and Food Chemistry, 48(7), 2755–2759. https://doi.org/10.1021/jf9911601

    Article  CAS  PubMed  Google Scholar 

  29. Ezadi, F., Ardebili, A., & Mirnejad, R. (2019). Antimicrobial susceptibility testing for polymyxins: Challenges, issues, and recommendations. Journal of clinical microbiology, 57(4), e01390-e1418. https://doi.org/10.1128/JCM.01390-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramírez-Carreto, S., Pérez-García, E. I., Salazar-García, S. I., Bernáldez-Sarabia, J., Licea-Navarro, A., Rudiño-Piñera, E., ... & Rodríguez-Almazán, C. (2019). Identification of a pore-forming protein from sea anemone Anthopleura dowii Verrill (1869) venom by mass spectrometry. Journal of Venomous Animals and Toxins including Tropical Diseases, 25. https://doi.org/10.1590/1678-9199-JVATITD-1474-18

  31. Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature reviews microbiology, 3(3), 238–250.

    Article  CAS  Google Scholar 

  32. Tennessen, J. A. (2005). Molecular evolution of animal antimicrobial peptides: Widespread moderate positive selection. Journal of evolutionary biology, 18(6), 1387–1394. https://doi.org/10.1111/j.1420-9101.2005.00925.x

    Article  CAS  PubMed  Google Scholar 

  33. Pag, U., Oedenkoven, M., Sass, V., Shai, Y., Shamova, O., Antcheva, N., ... & Sahl, H. G. (2008). Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an α-helical ‘sequence template’. Journal of Antimicrobial Chemotherapy, 61(2), 341-352. https://doi.org/10.1093/jac/dkm479

  34. Li, M., Cha, D. J., Lai, Y., Villaruz, A. E., Sturdevant, D. E., & Otto, M. (2007). The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Molecular microbiology, 66(5), 1136–1147. https://doi.org/10.1111/j.1365-2958.2007.05986.x

    Article  CAS  PubMed  Google Scholar 

  35. Esfandi, R., Walters, M. E., & Tsopmo, A. (2019). Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 5(4), e01538. https://doi.org/10.1016/j.heliyon.2019.e01538

    Article  PubMed  PubMed Central  Google Scholar 

  36. He, X. C., Qu, Z. G., & Xu, F. (2017). Simulation study of interaction mechanism between peptide and asymmetric membrane. Molecular Simulation, 43(1), 34–41.

    Article  CAS  Google Scholar 

  37. Hinkson, I. V., & Elias, J. E. (2011). The dynamic state of protein turnover: It’s about time. Trends in cell biology, 21(5), 293–303. https://doi.org/10.1016/j.tcb.2011.02.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by grants from the Biology Department, Sultan Qaboos University, and the Division of Microbiology, Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Khamis: data acquisition and process; Ching: review, guidance, and proofreading.

Corresponding authors

Correspondence to Khamis Sulaiman Al-Dhafri or Chai Lay Ching.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Dhafri, K.S., Ching, C.L. Isolation and Characterization of Antimicrobial Peptides Isolated from Fagonia bruguieri. Appl Biochem Biotechnol 194, 4319–4332 (2022). https://doi.org/10.1007/s12010-022-03818-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03818-7

Keywords

Navigation