Skip to main content
Log in

Prediction of Micronucleus Assay Outcome Using In Vivo Activity Data and Molecular Structure Features

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In vivo micronucleus assay is the widely used genotoxic test to determine the extent of chromosomal aberrations caused by the chemicals in human beings, which plays a significant role in the drug discovery paradigm. To reduce the uncertainties of the in vivo experiments and the expenses, we intended to develop novel machine learning-based tools to predict the toxicity of the compounds with high precision. A total of 372 compounds with known toxicity information were retrieved from the PubChem Bioassay database and literature. The fingerprints and descriptors of the compounds were generated using PaDEL and ChemSAR, respectively, for the analysis. The performance of the models was assessed using the three tires of evaluation strategies such as fivefold, tenfold, and validation by external dataset. Further, structural alerts causing genotoxicity of the compounds were identified using SARpy method. Of note, fingerprint-based random forest model built in our analysis is able to demonstrate the highest accuracy of about 0.97 during tenfold cross-validation. In essence, our study highlights that structural alerts such as chlorocyclohexane and trimethylamine are likely to be the leading cause of toxicity in humans. Indeed, we believe that random forest model generated in this study is appropriate for reduction of test animals and should be considered in the future for the good practice of animal welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

https://www.ncbi.nlm.nih.gov/guide/chemicals-bioassays/

Code Availability

Not applicable.

References

  1. Basu, A. K., & Nohmi, T. (2018). International Journal of Molecular Sciences, 19(4), 970.

    Article  Google Scholar 

  2. Eastmond, D. A., Hartwig, A., Anderson, D., Anwar, W. A., Cimino, M. C., & Dobrev, I. (2009). … and Vickers, C. Mutagenesis, 24(4), 341–349.

    Article  CAS  Google Scholar 

  3. Kang, S. H., Kwon, J. Y., Lee, J. K., & Seo, Y. R. (2013). J. Cancer. Prev., 18(4), 277.

    Article  Google Scholar 

  4. Van Bossuyt, M., Raitano, G., Honma, M., Van Hoeck, E., Vanhaecke, T., & Rogiers, V. (2020). … and Benfenati, E. Toxicology Letters, 329, 80–84.

    Article  Google Scholar 

  5. Kamath, P., Raitano, G., Fernández, A., Rallo, R., & Benfenati, E. (2015). SAR and QSAR in Environmental Research, 26(12), 1017–1031.

    Article  CAS  Google Scholar 

  6. Benigni, R., Bossa, C., & Worth, A. (2010). Mutagenesis, 25, 335–341.

    Article  CAS  Google Scholar 

  7. Khalifa, N., Kumar Konda, L. S., & Kristam, R. (2020). Future. Medicinal Chemistry, 12(20), 1829–1843.

    CAS  Google Scholar 

  8. Chen, X., Dang, L., Yang, H., Huang, X., & Yu, X. (2020). RSC Advances, 10(59), 36174–36180.

    Article  CAS  Google Scholar 

  9. Lavecchia, A. (2015). Drug Discovery Today, 20(3), 318–331.

    Article  Google Scholar 

  10. Wu, Y., & Wang, G. (2018). International Journal of Molecular Sciences, 19(8), 2358.

    Article  Google Scholar 

  11. Fan, D., Yang, H., Li, F., Sun, L., Di, P., & Li, W. (2018). … and Liu, G. Toxicol. Res., 7(2), 211–220.

    Article  CAS  Google Scholar 

  12. Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A., ... and Zhang, J. (2017) Nucleic Acids Res. 45(D1), D955-D963.

  13. Bero, S. A., Muda, A. K., Choo, Y. H., Muda, N. A., and Pratama, S. F. (2018) arXiv preprint. arXiv:1806.05237.

  14. Capecchi, A., Probst, D., & Reymond, J. L. (2020). J. Cheminf., 12(1), 1–15.

    Article  Google Scholar 

  15. Mauri, A., Consonni, V., & Todeschini, R. (2016). In Handbook of Computational Chemistry; Leszczynski J (pp. 1–29). Springer.

    Book  Google Scholar 

  16. Wu, Y., Han, C., Liu, J., Han, C., Wang, Z., Gong, L., Liu, J., Chong, Y., Liu, X., Liang, N., & Li, S. (2020). Frontiers in Oncology, 10, 743.

    Article  Google Scholar 

  17. Jiang, C., Zhao, P., Li, W., Tang, Y., & Liu, G. (2020). Toxicol. Res., 9(3), 164–172.

    Article  Google Scholar 

  18. Bhattacharjee, P., Dey, V., and Mandal, U. K. (2020) Saf. Sci. 132, 104967.

  19. Zhou, S., Wang, S., Wu, Q., Azim, R., and Li, W. (2020) Comput. Biol. Chem. 85, 107200.

  20. Wang, J., Deng, F., Zeng, F., Shanahan, A. J., Li, W. V., & Zhang, L. (2020). American Journal of Cancer Research, 10(5), 1344.

    PubMed  PubMed Central  Google Scholar 

  21. Suresh, K. (2020), Advances in artificial intelligence and data engineering, vol. 1133, Advances in Intelligent Systems and Computing (Chiplunkar, N., Fukao, T., eds,), Springer, Singapore, pp. 329–347.

  22. Khairunnahar, L., Hasib, M. A., Rezanur, R. H. B., Islam, M. R., and Hosain, M. K. (2019) Inform. Med. Unlocked. 16, 100189.

  23. Tapak, L., Shirmohammadi-Khorram, N., Amini, P., Alafchi, B., Hamidi, O., & Poorolajal, J. (2019). Clin. Epidemiology Glob. Health., 7(3), 293–299.

    Article  Google Scholar 

  24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., & Duchesnay, E. (2011). Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  25. Lynch, C. M., Abdollahi, B., Fuqua, J. D., Alexandra, R., Bartholomai, J. A., Balgemann, R. N., van Berkel, V. H., & Freiboes, H. B. (2017). International Journal of Medical Informatics, 108, 1–8.

    Article  Google Scholar 

  26. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). Neurocomputing, 408, 189–215.

    Article  Google Scholar 

  27. Dwivedi, A. K. (2018). Neural Computing and Applications, 29(12), 1545–1554.

    Article  Google Scholar 

  28. Chen, Y., Jia, Z., Mercola, D., and Xie, X. (2013) Comput. Math. Methods. Med. 2013, 873595.

  29. Yang, H., Li, J., Wu, Z., Li, W., Liu, G., & Tang, Y. (2017). Chemical Research in Toxicology, 30(6), 1355–1364.

    Article  CAS  Google Scholar 

  30. Wang, G., Sun, Y., Chen, Y., Gao, Q., Peng, D., Lin, H., ... and Zhuo, S. (2020) J. Biophotonics. 13(9), e202000050.

  31. Dong, J., Yao, Z. J., Zhu, M. F., Wang, N. N., Lu, B., Chen, A. F., ... and Cao, D. S. (2017) J. Cheminformatics. 9(1), 1–13.

  32. Alabi, R. O., Elmusrati, M., Sawazaki‐Calone, I., Kowalski, L. P., Haglund, C., Coletta, R. D., ... and Leivo, I. (2020) Int. J. Med. Inform. 136, 104068.

  33. Barlow, H., Mao, S., & Khushi, M. (2019). Data., 4(3), 129.

    Article  Google Scholar 

  34. Ma’ruf, F. A., and Wisesty, U. N. (2019) In Journal of Physics: Conference Series, March, IOP Publishing, 1192(1), 012011.

  35. Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). Frontiers in Pharmacology, 10, 434.

    Article  CAS  Google Scholar 

  36. Ufnal, M. (2020). Journal of Nutrition, 150(2), 419.

    Article  Google Scholar 

  37. Xu, J., Qiao, X., Cui, M. F., Tang, J. H., & Zhang, J. P. (2005). The Chinese Journal of Process Engineering, 5(6), 643.

    Google Scholar 

Download references

Acknowledgements

The authors thank the management of the Vellore Institute of Technology for providing the necessary facility to carry out this research work. We sincerely thank all the anonymous reviewers for their valuable suggestions in the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PR performed data collection, machine learning model generation, and validation. SV conceived this study and is responsible for the overall design, interpretation, manuscript preparation, and communication.

Corresponding author

Correspondence to Shanthi Veerappapillai.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 283 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, P., Veerappapillai, S. Prediction of Micronucleus Assay Outcome Using In Vivo Activity Data and Molecular Structure Features. Appl Biochem Biotechnol 193, 4018–4034 (2021). https://doi.org/10.1007/s12010-021-03720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03720-8

Keywords

Navigation