Skip to main content
Log in

Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40–80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rampelotto, P. H. (2013). Extremophiles and extreme environments. Life., 3(3), 482–485.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stetter, K. O. (2013). A brief history of the discovery of hyperthermophilic life. Biochemical Society Transactions, 41(1), 416–420.

    Article  CAS  PubMed  Google Scholar 

  3. Raval, V. H., Bhatt, H. B., & Singh, S. P. (2018). Extremophiles (Durvasula, R. V., & Rao, D. S.). CRC Press. US. pp. 137–164

  4. Roca, M., Liu, H., Messer, B., & Warshel, A. (2007). On the relationship between thermal stability and catalytic power of enzymes. Biochem., 46(51), 15076–15088.

    Article  CAS  Google Scholar 

  5. Gimenes, N. C., Silveira, E., & Tambourgi, E. B. (2021). An overview of proteases: Production, downstream processes and industrial applications. Separation and Purification Reviews, 50(3), 223–243.

    Article  CAS  Google Scholar 

  6. Litchfield, C. D. (2011). Potential for industrial products from the halophilic Archaea. Journal of Industrial Microbiology and Biotechnology, 38(10), 1635–1647.

    Article  CAS  PubMed  Google Scholar 

  7. Klingeberg, M., Hashwa, F., & Antranikian, G. (1991). Properties of extremely thermostable proteases from anaerobic hyperthermophilic bacteria. Applied Microbiology and Biotechnology, 34(6), 715–719.

    Article  CAS  Google Scholar 

  8. Toplak, A., Wu, B., Fusetti, F., Quaedflieg, P. J., & Janssen, D. B. (2013). Proteolysin, a novel highly thermostable and cosolvent-compatible protease from the thermophilic bacterium Coprothermobacter proteolyticus. Applied and Environment Microbiology, 79(18), 5625–5632.

    Article  CAS  Google Scholar 

  9. Abdollahi, P., Ghane, M., & Babaeekhou, L. (2021). Isolation and characterization of Thermophilic bacteria from Gavmesh Goli hot spring in Sabalan geothermal field, Iran: Thermomonas hydrothermalis and Bacillus altitudinis isolates as a potential source of Thermostable Protease. Geomicrobiology Journal, 38(1), 87–95.

    Article  CAS  Google Scholar 

  10. Abu-Khudir, R., Salem, M. M., Allam, N. G., & Ali, E. (2019). Production, Partial purification, and biochemical characterization of a thermotolerant alkaline metallo-protease from Staphylococcus sciuri. Applied Biochemistry and Biotechnology, 189(1), 87–102.

    Article  CAS  PubMed  Google Scholar 

  11. Raval, V. H., Pillai, S., Rawal, C. M., & Singh, S. P. (2014). Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochemistry, 49(6), 955–962.

    Article  CAS  Google Scholar 

  12. Al-Dhabi, N. A., Esmail, G. A., Ghilan, A. K. M., Arasu, M. V., Duraipandiyan, V., & Ponmurugan, K. (2020). Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian environment for eco-friendly and industrial applications. J. King Saud Univ. Sci., 32(1), 1258–1264.

    Article  Google Scholar 

  13. Gemechu, G., Masi, C., Tafesse, M., & Kebede, G. (2020). A review on the bacterial alkaline proteases. J Xidian Univ., 14(11), 632–634.

    Google Scholar 

  14. Katchalski-Katzir, E., & Kraemer, D. M. (2000). Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis. B, Enzymatic, 10(1–3), 157–176.

    Article  CAS  Google Scholar 

  15. Singh, R., Mittal, A., Kumar, M., & Mehta, P. K. (2016). Microbial proteases in commercial applications. J Pharm Chem Biol Sci, 4(3), 365–374.

    CAS  Google Scholar 

  16. Gupta, R., Gupta, K., Saxena, R. K., & Khan, S. (1999). Bleach-stable, alkaline protease from Bacillus sp. Biotechnology Letters, 21(2), 135–138.

    Article  CAS  Google Scholar 

  17. Arya, P., Jani, S. A., Rajput, K. N., & Raval, V. (2020, March). Thermostable alkaline proteases from bacteria: A review. In Proceedings of the National Conference on Innovations in Biological Sciences (NCIBS).

  18. Rawlings, N. D., & Barrett, A. J. (1993). Evolutionary families of peptidases. The Biochemical Journal, 290(1), 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gurupriya, V. S., & Roy, S. C. (2017). In proteases in physiology and pathology. (Chakraborti, S., & Dhalla, N. S.).Springer, Singapore. pp. 195–216.

  20. Sawant, R., & Nagendran, S. (2014). Protease: An enzyme with multiple industrial applications. World J Pharm Pharm Sci., 3(6), 568–579.

    CAS  Google Scholar 

  21. Sani, J. T., Gharibi, S. O. S., & Shariati, M. A. (2017). The importance of alkaline protease commercial applications: A short review. Indian J. Biotech. Pharm. Biotech., 5(1), 5.

    CAS  Google Scholar 

  22. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mótyán, J. A., Tóth, F., & Tőzsér, J. (2013). Research applications of proteolytic enzymes in molecular biology. Biomol, 3(4), 923–942.

    Google Scholar 

  24. Dunaevsky, Y. E., Popova, V. V., Semenova, T. A., Beliakova, G. A., & Belozersky, M. A. (2014). Fungal inhibitors of proteolytic enzymes: Classification, properties, possible biological roles, and perspectives for practical use. Biochim., 101, 10–20.

    Article  CAS  Google Scholar 

  25. Page, M. J., & Di Cera, E. (2008). Serine peptidases: Classification, structure and function. Cellular and Molecular Life Sciences, 65(7), 1220–1236.

    Article  CAS  PubMed  Google Scholar 

  26. Thakur, N., Goyal, M., Sharma, S., & Kumar, D. (2018). Proteases: Industrial applications and approaches used in strain improvement. In Biol Forum., 10(1), 158–167.

    CAS  Google Scholar 

  27. Moon, S. H., & Parulekar, S. J. (1991). A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus. Biotechnology and Bioengineering, 37(5), 467–483.

    Article  CAS  PubMed  Google Scholar 

  28. Rani, K., Rana, R., & Datt, S. (2012). Review on latest overview of proteases. Int J Curr Life Sci, 2(1), 12–18.

    Google Scholar 

  29. Badgujar, S. B., Mahajan, R. T., & Badgujar, S. B. (2010). Biological aspects of proteolytic enzymes: A review. J Pharm Res..

  30. Fitzgerald, P. M., & Springer, J. P. (1991). Structure and function of retroviral proteases. Annual Review of Biophysics and Biophysical Chemistry, 20, 299–320.

    Article  CAS  PubMed  Google Scholar 

  31. Henry, J. P. (1992). Biological basis of the stress response. Integrative Psychological & Behavioral Science, 27(1), 66–83.

    Article  CAS  Google Scholar 

  32. Szecsi, P. B. (1992). The aspartic proteases. Scandinavian Journal of Clinical and Laboratory Investigation, 52(210), 5–22.

    Article  CAS  Google Scholar 

  33. Fricker, S. P. (2010). Cysteine proteases as targets for metal-based drugs. Metallomics, 2(6), 366–377.

    Article  CAS  PubMed  Google Scholar 

  34. Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z., & Amjad, F. (2021). Protease—A versatile and ecofriendly biocatalyst with multi-industrial applications: An updated review. Catal Letters, 151(2), 307–323.

    Article  CAS  Google Scholar 

  35. Hashim, M. M., Mingsheng, D., Iqbal, M. F., & Xiaohong, C. (2011). Ginger rhizome as a potential source of milk coagulating cysteine protease. Phytochem., 72(6), 458–464.

    Article  CAS  Google Scholar 

  36. Hashimoto, K., Yamanishi, Y., Maeyens, E., Dabbous, K., & Kanzaki, T. (1973). Collagenolytic activities of squamous cell carcinoma of the skin. Cancer Research, 33, 2790–2802.

    CAS  PubMed  Google Scholar 

  37. Hibbs, M. S., Hasty, K. A., Seyer, J. M., Kang, A. H., & Mainardi, C. L. (1985). Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. Journal of Biological Chemistry, 260(4), 2493–2500.

    Article  CAS  Google Scholar 

  38. Chen, M. S., Lin, C. Y., Chiu, Y. H., Chen, C. P., Tsai, P. J., & Wang, H. S. (2018). IL-1β-Induced matrix metalloprotease-1 promotes mesenchymal stem cell migration via PAR1 and G-protein-coupled signaling pathway. Stem Cells Int., 2018, 3524759.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ellaiah, P., Srinivasulu, B., & Adinarayana, K. (2002). A review on microbial alkaline proteases.

  40. Banerjee, S., Maiti, T. K., & Roy, R. N. (2017). Protease production by thermo-alkaliphilic novel gut isolate Kitasatospora cheerisanensis GAP 124 from Gryllotalpa africana. Biocatal. Biotransformation, 35(3), 168–176.

    Article  CAS  Google Scholar 

  41. de Castro, R. J. S., & Sato, H. H. (2014). Production and biochemical characterization of protease from Aspergillus oryzae: An evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatalysis and Agricultural Biotechnology, 3(3), 20–25.

    Article  Google Scholar 

  42. Mishra, S. S., Ray, R. C., Rosell, C. M., & Panda, D. (2017). In microbial enzyme technology in food applications. CRC Press. US. pp. 3–18.

  43. Tavano, O. L., Berenguer-Murcia, A., Secundo, F., & Fernandez-Lafuente, R. (2018). Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf., 17(2), 412–436.

    Article  PubMed  Google Scholar 

  44. Fazilat, A. (2016). Production, isolation, purification and partial characterization of an extracellular acid protease from Aspergillus niger. Int J Adv Res Biol Sci, 3(3), 32–38.

    CAS  Google Scholar 

  45. Singh, S., & Bajaj, B. K. (2017). Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol. Environ., 2(6), 370–386.

    Article  Google Scholar 

  46. Contesini, F. J., Melo, R. R. D., & Sato, H. H. (2018). An overview of Bacillus proteases: From production to application. Critical Reviews in Biotechnology, 38(3), 321–334.

    Article  CAS  PubMed  Google Scholar 

  47. Jisha, V. N., Smitha, R. B., Pradeep, S., Sreedevi, S., Unni, K. N., Sajith, S., ... & Benjaminn, S. (2013). Versatility of microbial proteases Advances in Enzyme Research, 1 (3), 39–51.

  48. Bhunia, B., Basak, B., & Dey, A. (2012). A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology, 3(4), 448–457.

    CAS  Google Scholar 

  49. Chaud, L. C., Lario, L. D., Bonugli-Santos, R. C., Sette, L. D., Junior, A. P., & Felipe, M. D. G. D. A. (2016). Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7. New Biotechnology, 33(6), 807–814.

    Article  CAS  PubMed  Google Scholar 

  50. Jaswal, R. K., Kocher, G. S., & Virk, M. S. (2008). Production of alkaline protease by Bacillus circulans using agricultural residues: A statistical approach.

  51. Al-Qodah, Z., Daghistani, H., & Alananbeh, K. (2013). Isolation and characterization of thermostable protease producing Bacillus pumilus from thermal spring in Jordan. Afr. J. Microbiol. Res., 7(29), 3711–3719.

    CAS  Google Scholar 

  52. Sharma, I., & Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules, 166, 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  53. Souza, P. M. D., Bittencourt, M. L. D. A., Caprara, C. C., Freitas, M. D., Almeida, R. P. C. D., Silveira, D., ... & Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases. Braz. J. Microbiol., 46, 337-346.

  54. Benluvankar, V., Jebapriya, G. R., & Gnanadoss, J. J. (2015). Protease production by Penicillium sp. LCJ228 under solid state fermentation using groundnut oilcake as substrate. Life., 50, 12.

    Google Scholar 

  55. Mukhtar, H., & Haq, I. (2013). Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation. Sci. World J., 2013.

  56. Novelli, P. K., Barros, M. M., & Fleuri, L. F. (2016). Novel inexpensive fungi proteases: Production by solid state fermentation and characterization. Food Chemistry, 198, 119–124.

    Article  CAS  PubMed  Google Scholar 

  57. Oyeleke, S. B., Egwim, E. C., & Auta, S. H. (2010). Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. J. Microbiol. Antimicrob., 2(7), 83–87.

    CAS  Google Scholar 

  58. Sharma, A. K., Sharma, V., Saxena, J., Yadav, B., Alam, A., & Prakash, A. (2015). Isolation and screening of extracellular protease enzyme from bacterial and fungal isolates of soil. Int J Sci Res Environ Sci, 3(9), 0334–0340.

    CAS  Google Scholar 

  59. Erdönmez, O., Gedikli, S., Yaman, B. N., Çelik, P. A., & Çabuk, A. Thermophilic prokaryotic diversity of eynal geothermal spring and protease production potentials of isolates. Eskişehir. Tech. Univ. 21(3), 436-445.

  60. Gurunathan, R., Huang, B., Ponnusamy, V. K., Hwang, J. S., & Dahms, H. U. (2021). Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs. Science and Reports, 11(1), 1–14.

    Google Scholar 

  61. Akkır, E. Y., Şahin, Y. B., Gedikli, S., Çelik, P. A., & Çabuk, A. (2021). Extremely thermostable, EDTA-resistant alkaline protease from a thermophilic Geobacillus subterraneus C2–1 isolate. J. microbiol., biotechnol. food sci. 2021, 50–56.

  62. Emran, M. A., Ismail, S. A., & Hashem, A. M. (2020). Production of detergent stable thermophilic alkaline protease by Bacillus licheniformis ALW1. Biocatal. Agric. Biotechnol., 26, 101631.

    Article  Google Scholar 

  63. Arya, P., Trivedi, M., Ramani, N., Patel, K., & Rajput, K. N. (2020). Isolation, production and applications of alkaline protease from hot springs bacterial isolates. Biosci. Biotechnol. Res. Commun..

  64. Naidu, K. S. B., & Devi, K. L. (2005). Optimization of thermostable alkaline protease production from species of Bacillus using rice bran. African Journal of Biotechnology, 4(7), 724–726.

    Article  CAS  Google Scholar 

  65. Ginting, E. L., Kemer, K., Wullur, S., & Uria, A. R. (2020). Identification of proteolytic thermophiles from Moinit Coastal hot-spring, North Sulawesi. Indonesia. Geomicrobiol. J., 37(1), 50–58.

    Article  CAS  Google Scholar 

  66. Mechri, S., Bouacem, K., Jabeur, F., Mohamed, S., Addou, N. A., & Dab, A.,... & Jaouadi, B. . (2019). Purification and biochemical characterization of a novel thermostable and halotolerant subtilisin SAPN, a serine protease from Melghiribacillus thermohalophilus Nari2A T for chitin extraction from crab and shrimp shell by-products. Extremophiles, 23(5), 529–547.

    Article  CAS  PubMed  Google Scholar 

  67. Manavalan, T., Manavalan, A., Ramachandran, S., & Heese, K. (2020). Identification of a novel thermostable alkaline protease from Bacillus megaterium-TK1 for the detergent and leather industry. Biology., 9(12), 472.

    Article  CAS  PubMed Central  Google Scholar 

  68. Nnolim, N. E., Okoh, A. I., & Nwodo, U. U. (2020). Proteolytic bacteria isolated from agro-waste dumpsites produced keratinolytic enzymes. Biotechnol. Rep., 27, e00483.

    Article  Google Scholar 

  69. Lam, M. Q., Mut, N. N. N., Thevarajoo, S., Chen, S. J., Selvaratnam, C., Hussin, H., ... & Chong, C. S. (2018). Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech., 8(2), 1–9.

  70. Kaewsalud, T., Yakul, K., Jantanasakulwong, K., Tapingkae, W., Watanabe, M., & Chaiyaso, T. (2020). Biochemical characterization and application of thermostable-alkaline keratinase from Bacillus halodurans SW-X to valorize chicken feather wastes. Waste and Biomass Valorization, 1–14.

  71. Tuysuz, E., Gonul-Baltaci, N., Omeroglu, M. A., Adiguzel, A., Taskin, M., & Ozkan, H. (2020). Co-production of amylase and protease by locally isolated thermophilic bacterium Anoxybacillus rupiensis T2 in sterile and non-sterile media using waste potato peels as substrate. Waste and Biomass Valorization, 1–10.

  72. Nnolim, N. E., & Nwodo, U. U. (2020). Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: Keratinolytic enzyme characterization. BMC Biotechnol., 20(1), 65.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vidyasagar, M., Prakash, S. B., & Sreeramulu, K. (2006). Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Lett. Appl. Microbiol., 43(4), 385–391.

    Article  CAS  PubMed  Google Scholar 

  74. Sharma, A. K., Kikani, B. A., & Singh, S. P. (2020). Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18. International Journal of Biological Macromolecules, 153, 680–696.

    Article  CAS  PubMed  Google Scholar 

  75. Tsuchiya, K., Nakamura, Y., Sakashita, H., & Kimura, T. (1992). Purification and characterization of a thermostable alkaline protease from alkalophilic Thermoactinomyces sp. HS682. Biosci. Biotechnol. Biochem., 56(2), 246–250.

    Article  CAS  PubMed  Google Scholar 

  76. Tsuchiya, K., Arai, T., Seki, K., & Kimura, T. (1987). Purification and some properties of alkaline proteinases from Cephalosporium sp. KM388. Agric. Biol. Chem., 51(11), 2959–2965.

    CAS  Google Scholar 

  77. Damare, S., Mishra, A., D’Souza-Ticlo-Diniz, D., Krishnaswamy, A., & Raghukumar, C. (2020). A deep-sea hydrogen peroxide-stable alkaline serine protease from Aspergillus flavus. 3 Biotech, 10(12), 1–9.

  78. Abu-Tahon, M. A., Arafat, H. H., & Isaac, G. S. (2020). Laundry detergent compatibility and dehairing efficiency of alkaline thermostable protease produced from Aspergillus terreus under solid-state fermentation. Journal of Oleo Science, 69(3), 241–254.

    Article  CAS  PubMed  Google Scholar 

  79. Ja’afaru, M. I., Chimbekujwo, K. I., & Ajunwa, O. M. . (2020). Purification, characterization and de-staining potentials of a thermotolerant protease produced by Fusarium oxysporum. Period. Polytech. Chem. Eng., 64(4), 539–547.

    Google Scholar 

  80. Nieri, B., Canino, S., Versace, R., & Alpi, A. (1998). Purification and characterization of an endoprotease from alfalfa senescent leaves. Phytochemistry, 49(3), 643–649.

    Article  CAS  Google Scholar 

  81. Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186.

    Article  PubMed  Google Scholar 

  82. Silva, B. L., Geraldes, F. M., Murari, C. S., Gomes, E., & Da-Silva, R. (2014). Production and characterization of a milk-clotting protease produced in submerged fermentation by the thermophilic fungus Thermomucor indicae-seudaticae N31. Applied Biochemistry and Biotechnology, 172(4), 1999–2011.

    Article  CAS  PubMed  Google Scholar 

  83. Bonugli-Santos, R. C., dos Santos Vasconcelos, M. R., Passarini, M. R., Vieira, G. A., Lopes, V. C., Mainardi, P. H., ... & Sette, L. D. (2015). Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front. Microbiol., 6, 269.

  84. Kasana, R. C., Salwan, R., & Yadav, S. K. (2011). Microbial proteases: Detection, production, and genetic improvement. Critical Reviews in Microbiology, 37(3), 262–276.

    Article  CAS  PubMed  Google Scholar 

  85. Lemes, A. C., Álvares, G. T., Egea, M. B., Brandelli, A., & Kalil, S. J. (2016). Simultaneous production of proteases and antioxidant compounds from agro-industrial by-products. Bioresource Technology, 222, 210–216.

    Article  CAS  PubMed  Google Scholar 

  86. Rathod, M. G., & Pathak, A. P. (2014). Wealth from waste: Optimized alkaline protease production from agro-industrial residues by Bacillus alcalophilus LW8 and its biotechnological applications. J. Taibah Univ. Sci., 8(4), 307–314.

    Article  Google Scholar 

  87. Subramaniyam, R., & Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int J Sci Nat, 3(3), 480–486.

    CAS  Google Scholar 

  88. Simair, A. A., Qureshi, A. S., Khushk, I., Ali, C. H., Lashari, S., Bhutto, M. A., ... & Lu, C. (2017). Production and partial characterization of α-amylase enzyme from Bacillus sp. BCC 01–50 and potential applications. Biomed Res. Int., 2017.

  89. Chutmanop, J., Chuichulcherm, S., Chisti, Y., & Srinophakun, P. (2008). Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. Journal of Chemical Technology and Biotechnology, 83(7), 1012–1018.

    Article  CAS  Google Scholar 

  90. Niyonzima, F. N., & More, S. S. (2013). Screening and optimization of cultural parameters for an alkaline protease production by Aspergillus terreus gr. under submerged fermentation. Int J Pharm Bio Sci, 4(1), 1016–1028.

    CAS  Google Scholar 

  91. Kumar, A. G., Swarnalatha, S., Gayathri, S., Nagesh, N., & Sekaran, G. (2008). Characterization of an alkaline active–thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. Journal of Applied Microbiology, 104(2), 411–419.

    CAS  PubMed  Google Scholar 

  92. Lee, H., Suh, D. B., Hwang, J. H., & Suh, H. J. (2002). Characterization of a kerationlytic metalloprotease from Bacillus sp. SCB-3. Appl. Biochem. Biotechnol., 97(2), 123–133.

    Article  CAS  PubMed  Google Scholar 

  93. Mitsuiki, S., Sakai, M., Moriyama, Y., Goto, M., & Furukawa, K. (2002). Purification and some properties of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Biosci. Biotechnol. Biochem., 66(1), 164–167.

    Article  CAS  PubMed  Google Scholar 

  94. Nam, G. W., Lee, D. W., Lee, H. S., Lee, N. J., Kim, B. C., Choe, E. A., ... & Pyun, Y. R. (2002). Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol., 178(6), 538-547.

  95. Cao, Z. J., Zhang, Q., Wei, D. K., Chen, L., Wang, J., Zhang, X. Q., & Zhou, M. H. (2009). Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. Journal of Industrial Microbiology, 36(2), 181–188.

    Article  CAS  Google Scholar 

  96. Benito, M. J., Rodríguez, M., Núnez, F., Asensio, M. A., Bermúdez, M. E., & Córdoba, J. J. (2002). Purification and characterization of an extracellular protease from Penicillium chrysogenum Pg222 active against meat proteins. Applied and Environment Microbiology, 68(7), 3532–3536.

    Article  CAS  Google Scholar 

  97. Damare, S., Raghukumar, C., Muraleedharan, U. D., & Raghukumar, S. (2006). Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enyzme and Microbial Technology, 39(2), 172–181.

    Article  CAS  Google Scholar 

  98. Devi, M. K., Banu, A. R., Gnanaprabhal, G. R., Pradeep, B. V., & Palaniswamy, M. (2008). Purification, characterization of alkaline protease enzyme from native isolate Aspergillus niger and its compatibility with commercial detergents. Indian Journal of Science and Technology, 1(7), 1–6.

    Google Scholar 

  99. Ali, T. H., Ali, N. H., & Mohamed, L. A. (2011). Production, purification and some properties of extracellular keratinase from feathers-degradation by Aspergillus oryzae Nrrl-447. J. Appl. Sci. Environ., 6(2).

  100. Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., & Ashraf, M. (2019). Microbial proteases applications. Front. Bioeng. Biotechnol., 7, 110.

    Google Scholar 

  101. Sharma, M., Gat, Y., Arya, S., Kumar, V., Panghal, A., & Kumar, A. (2019). A review on microbial alkaline protease: An essential tool for various industrial approaches. Industrial Biotechnology, 15(2), 69–78.

    Article  CAS  Google Scholar 

  102. Prakash, O., Nimonkar, Y., Chavadar, M. S., Bharti, N., Pawar, S., Sharma, A., & Shouche, Y. S. (2017). Optimization of nutrients and culture conditions for alkaline protease production using two endophytic Micrococci: Micrococcus aloeverae and Micrococcus yunnanensis. Indian J. Microbiol., 57(2), 218–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qureshi, A. S., Simair, A. A., Ali, C. H., Khushk, I., Khokhar, J. A., Ahmad, A., & Lu, C. (2018). Production, purification and partial characterization of organo-solvent tolerant protease from newly isolated Bacillus sp. BBXS-2. Ferment Technol, 7(151), 2.

    Google Scholar 

  104. Malathi, S., Priya, D. M., & Palani, P. (2014). Microbial diversity and biotechnology in food security. (Kharwar, R. N., Upadhyay, R. S., Dubey, N. K., & Raghuwanshi), R. Springer, New Delhi. pp. 451–462.

  105. Shanmuga Priya, S., Krishnareni, J., Selvin, J., Gandhimathi, R., Arunkumar, M., Thangavelu, T., ... & Natarajaseenivasan, K. (2008). Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter Sp (MMD040). Bioprocess Biosyst Eng, 31, 427-433.

  106. Abd Rahman, R. N. Z., Geok, L. P., Basri, M., & Salleh, A. B. (2005). Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresource Technology, 96(4), 429–436.

    Article  Google Scholar 

  107. Mothe, T., & Sultanpuram, V. R. (2016). Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech, 6(1), 53.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pandey, A., Tyagi, R. D., & Varjani, S. (Eds.). (2021). Biomass, biofuels, biochemicals: Circular bioeconomy—Current developments and future outlook. Elsevier.

  109. Wilson, P., & Remigio, Z. (2012). Production and characterisation of protease enzyme produced by a novel moderate thermophilic bacterium (EP1001) isolated from an alkaline hot spring. Zimbabwe. Afr. J. Microbiol. Res., 6(27), 5542–5551.

    CAS  Google Scholar 

  110. Govind, N. S., Mehta, B., Sharma, M., & Modi, V. V. (1981). Protease and carotenogenesis

  111. Deutscher, M. P. (Ed.). (1990). Guide to protein purification. Gulf Professional Publishing.

  112. Lakshmi, B. K. M., Kumar, D. M., & Hemalatha, K. P. J. (2018). Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. Journal, Genetic Engineering & Biotechnology, 16(2), 295–304.

    Article  CAS  Google Scholar 

  113. Banerjee, G., & Ray, A. K. (2017). Impact of microbial proteases on biotechnological industries. Biotechnology and Genetic Engineering Reviews, 33(2), 119–143.

    Article  CAS  PubMed  Google Scholar 

  114. Kumar, C. G., & Takagi, H. (1999). Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances, 17(7), 561–594.

    Article  CAS  PubMed  Google Scholar 

  115. Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., & Wang, X.,... & Yuan, Z. . (2016). Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online, 18(1), 1–18.

    Article  Google Scholar 

  116. Hotha, S., & Banik, R. M. (1997). Production of alkaline protease by Bacillus thuringiensis H 14 in Aqueous Two-Phase Systems. Int. J. Environ. Res, 69(1), 5–10.

    CAS  Google Scholar 

  117. Jani, S. A., Heta, R., Patel, H., Darji, D., Rathod, A., & Pal, S. (2015). Production and characterization of keratinolytic protease from Streptomyces sp. International Journal of Current Microbiology and Applied Sciences, 4(5), 962–975.

    CAS  Google Scholar 

  118. Hajji, M., Rebai, A., Gharsallah, N., & Nasri, M. (2008). Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design. Applied Microbiology and Biotechnology, 79(6), 915–923.

    Article  CAS  PubMed  Google Scholar 

  119. Joo, H. S., Kumar, C. G., Park, G. C., Kim, K. T., Paik, S. R., & Chang, C. S. (2002). Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochemistry, 38(2), 155–159.

    Article  CAS  Google Scholar 

  120. Watanabe, A., Kamio, Y., Kimura, W., & Izaki, K. (1993). Purification and characterization of a thermostable neutral metalloprotease I from Chloroflexus aurantiacus J-10-fl. Bioscience, Biotechnology, and Biochemistry, 57(12), 2160–2165.

    Article  CAS  PubMed  Google Scholar 

  121. Adinarayana, K., Ellaiah, P., & Prasad, D. S. (2003). Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. An Official Journal of the American Association of Pharmaceutical Scientists, 4(4), 440–448.

    Google Scholar 

  122. Asker, M. M., Mahmoud, M. G., El Shebwy, K., & Abd el Aziz, M. S. (2013). Purification and characterization of two thermostable protease fractions from Bacillus megaterium. Journal, Genetic Engineering & Biotechnology, 11(2), 103–109.

    Article  Google Scholar 

  123. Pathak, A. P., & Sardar, A. G. (2014). Isolation and characterization of salt stable protease producing archaea from marine solar saltern of Mulund, Mumbai.

  124. Yilmaz, B., Baltaci, M. O., Sisecioglu, M., & Adiguzel, A. (2016). Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: Purification, characterization, effects of surfactants and organic solvents. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  125. Phadatare, S. U., Deshpande, V. V., & Srinivasan, M. C. (1993). High activity alkaline protease from Conidiobolus coronatus (NCL 86.8. 20): Enzyme production and compatibility with commercial detergents. Enzyme Microb. Technol., 15(1), 72–76.

    Article  CAS  Google Scholar 

  126. Gupta, R., & Ramnani, P. (2006). Microbial keratinases and their prospective applications: An overview. Appl. Microbiol. Biotechno, 70(1), 21–33.

    Article  CAS  Google Scholar 

  127. Pandey, S., Rakholiya, K. D., Raval, V. H., & Singh, S. P. (2012). Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature. Journal of Bioscience and Bioengineering, 114(3), 251–256.

    Article  CAS  PubMed  Google Scholar 

  128. Tsai, Y. C., Juang, R. Y., Lin, S. F., Chen, S. W., Yamasaki, M., & Tamura, G. (1988). Production and further characterization of an alkaline elastase produced by alkalophilic Bacillus strain Ya-B. Applied and Environment Microbiology, 54(12), 3156–3161.

    Article  CAS  Google Scholar 

  129. Huston, A. L., Methe, B., & Deming, J. W. (2004). Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Applied and Environment Microbiology, 70(6), 3321–3328.

    Article  CAS  Google Scholar 

  130. Verma, J., & Pandey, S. (2019). Characterization of partially purified alkaline protease secreted by halophilic bacterium Citricoccus sp. isolated from agricultural soil of northern India. Biocatalysis and Agricultural Biotechnology, 17, 605–612.

    Article  Google Scholar 

  131. Koszelak, S., Ng, J. D., Day, J., Ko, T. P., Greenwood, A., & McPherson, A. (1997). The crystallographic structure of the subtilisin protease from Penicillium cyclopium. Biochem., 36(22), 6597–6604.

    Article  CAS  Google Scholar 

  132. Dadshahi, Z., Homaei, A., Zeinali, F., Sajedi, R. H., & Khajeh, K. (2016). Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chemistry, 202, 110–115.

    Article  CAS  PubMed  Google Scholar 

  133. Silva, C., Martins, M., Jing, S., Fu, J., & Cavaco-Paulo, A. (2018). Practical insights on enzyme stabilization. Critical Reviews in Biotechnology, 38(3), 335–350.

    Article  CAS  PubMed  Google Scholar 

  134. Xia, W., Xu, X., Qian, L., Shi, P., Bai, Y., Luo, H., ... & Yao, B. (2016). Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance. Biotechnol. Biofuels, 9(1), 1-12.

  135. Hasunuma, T., Okazaki, F., Okai, N., Hara, K. Y., Ishii, J., & Kondo, A. (2013). A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource Technology, 135, 513–522.

    Article  CAS  PubMed  Google Scholar 

  136. Bilal, M., Zhao, Y., Noreen, S., Shah, S. Z. H., Bharagava, R. N., & Iqbal, H. M. (2019). Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatal. Biotransformation, 37(3), 159–182.

    Article  CAS  Google Scholar 

  137. Wu, I., & Arnold, F. H. (2013). Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnology and Bioengineering, 110(7), 1874–1883.

    Article  CAS  PubMed  Google Scholar 

  138. Woodley, J. M. (2018). Integrating protein engineering with process design for biocatalysis. A Math Phys Eng Sci., 376(2110), 20170062.

    Google Scholar 

  139. Wang, Q., Zhou, L., Jiang, Y., & Gao, J. (2011). Improved stability of the carbon nanotubes–enzyme bioconjugates by biomimetic silicification. Enyzme and Microbial Technology, 49(1), 11–16.

    Article  Google Scholar 

  140. Blum, J. K., Ricketts, M. D., & Bommarius, A. S. (2012). Improved thermostability of AEH by combining B-FIT analysis and structure-guided consensus method. Journal of Biotechnology, 160(3–4), 214–221.

    Article  CAS  PubMed  Google Scholar 

  141. Pickersgill, R. W., Sumner, I. G., & Goodenough, P. W. (1990). Preliminary crystallographic data for protease. European Journal of Biochemistry, 190(2), 443–444.

    Article  CAS  PubMed  Google Scholar 

  142. Ashraf, N. M., Krishnagopal, A., Hussain, A., Kastner, D., Sayed, A. M. M., Mok, Y. K., & Zeeshan, N. (2019). Engineering of serine protease for improved thermostability and catalytic activity using rational design. International Journal of Biological Macromolecules, 126, 229–237.

    Article  CAS  PubMed  Google Scholar 

  143. Li, Y., Hu, F., Wang, X., Cao, H., Liu, D., & Yao, D. (2013). A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. Journal of Biotechnology, 163(4), 401–407.

    Article  CAS  PubMed  Google Scholar 

  144. Xu, M. Q., Wang, S. S., Li, L. N., Gao, J., & Zhang, Y. W. (2018). Combined cross-linked enzyme aggregates as. Biocatal., 8(10), 460.

    Google Scholar 

  145. Hu, W., Liu, X., Li, Y., Liu, D., Kuang, Z., Qian, C., & Yao, D. (2017). Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enyzme and Microbial Technology, 97, 82–89.

    Article  CAS  Google Scholar 

  146. Reetz, M. T., & Carballeira, J. D. (2007). Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat., 2(4), 891–903.

    CAS  Google Scholar 

  147. Porter, J. L., Rusli, R. A., & Ollis, D. L. (2016). Directed evolution of enzymes for industrial biocatalysis. Chem Bio Chem, 17(3), 197–203.

    Article  CAS  PubMed  Google Scholar 

  148. Zhu, F., He, B., Gu, F., Deng, H., Chen, C., Wang, W., & Chen, N. (2020). Improvement in organic solvent resistance and activity of metalloprotease by directed evolution. Journal of Biotechnology, 309, 68–74.

    Article  CAS  PubMed  Google Scholar 

  149. Zhao, H. Y., Wu, L. Y., Liu, G., & Feng, H. (2016). Single-site substitutions improve cold activity and increase thermostability of the dehairing alkaline protease (DHAP). Bioscience, Biotechnology, and Biochemistry, 80(12), 2480–2485.

    Article  CAS  PubMed  Google Scholar 

  150. Fang, Z., Zhang, J., Du, G., & Chen, J. (2016). Improved catalytic efficiency, thermophilicity, anti-salt and detergent tolerance of keratinase KerSMD by partially truncation of PPC domain. Science and Reports, 6(1), 1–11.

    Google Scholar 

  151. Guo, Y., Tu, T., Zheng, J., Ren, Y., Wang, Y., Bai, Y.,... & Luo, H. (2020). A novel thermostable aspartic protease from Talaromyces leycettanus and its specific autocatalytic activation through an intermediate transition state. Appl. Microbiol. Biotechnol., 104(11), 4915-4926.

  152. Morsi, R., Bilal, M., Iqbal, H. M., & Ashraf, S. S. (2020). Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci. Total Environ., 714, 136572.

    Article  CAS  PubMed  Google Scholar 

  153. Bilal, M., & Iqbal, H. M. (2019). Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 388, 1–23.

    Article  CAS  Google Scholar 

  154. Tanksale, A., Chandra, P. M., Rao, M., & Deshpande, V. (2001). Immobilization of alkaline protease from Conidiobolus macrosporus for reuse and improved thermal stability. Journal of Biotechnology Letters, 23(1), 51–54.

    Article  CAS  Google Scholar 

  155. Ibrahim, A. S. S., Al-Salamah, A. A., El-Toni, A. M., Almaary, K. S., El-Tayeb, M. A., Elbadawi, Y. B., & Antranikian, G. (2016). Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. International Journal of Molecular Sciences, 17(2), 184.

    Article  PubMed Central  Google Scholar 

  156. Adamczak, M., & Krishna, S. H. (2004). Strategies for improving enzymes for efficient biocatalysis. Food Technol. Biotechnol., 42(4), 251–264.

    CAS  Google Scholar 

  157. Kumar, D., & Bhalla, T. C. (2005). Microbial proteases in peptide synthesis: Approaches and applications. Applied Microbiology and Biotechnology, 68(6), 726–736.

    Article  CAS  PubMed  Google Scholar 

  158. Awad, G. E., Ghanem, A. F., Wahab, W. A. A., & Wahba, M. I. (2020). Functionalized κ-carrageenan/hyperbranched poly (amidoamine) for protease immobilization: Thermodynamics and stability studies. International Journal of Biological Macromolecules, 148, 1140–1155.

    Article  CAS  PubMed  Google Scholar 

  159. Özacar, M., Mehde, A. A., Mehdi, W. A., Özacar, Z. Z., & Severgün, O. (2019). The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application. Colloids Surf., B. 173, 58-68.

  160. Bilal, M., Jing, Z., Zhao, Y., & Iqbal, H. M. (2019). Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal. Agric. Biotechnol., 19, 101174.

    Article  Google Scholar 

  161. de Melo Brites, M., Cerón, A. A., Costa, S. M., Oliveira, R. C., Ferraz, H. G., Catalani, L. H., & Costa, S. A. (2020). Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique. Enzyme Microb. Technol., 132, 109384.

    Article  PubMed  Google Scholar 

  162. Benucci, I., Caso, M. C., Bavaro, T., Masci, S., Keršienė, M., & Esti, M. (2020). Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control, 110, 106987.

    Article  CAS  Google Scholar 

  163. Hu, T. G., Cheng, J. H., Zhang, B. B., Lou, W. Y., & Zong, M. H. (2015). Immobilization of alkaline protease on amino-functionalized magnetic nanoparticles and its efficient use for preparation of oat polypeptides. Industrial and Engineering Chemistry Research, 54(17), 4689–4698.

    Article  CAS  Google Scholar 

  164. Wang, S. N., Zhang, C. R., Qi, B. K., Sui, X. N., Jiang, L. Z., Li, Y., & Zhang, Q. Z. (2014). Immobilized alcalase alkaline protease on the magnetic chitosan nanoparticles used for soy protein isolate hydrolysis. European Food Research and Technology, 239(6), 1051–1059.

    Article  CAS  Google Scholar 

  165. Thakrar, F. J., & Singh, S. P. (2019). Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. Bioresource Technology, 278, 150–158.

    Article  CAS  PubMed  Google Scholar 

  166. Sadjadi, M. S., Farhadyar, N., & Zare, K. (2009). Synthesis of bi-metallic Au–Ag nanoparticles loaded on functionalized MCM-41 for immobilization of alkaline protease and study of its biocatalytic activity. Superlattices and Microstructures, 46(4), 563–571.

    Article  CAS  Google Scholar 

  167. Icimoto, M. Y., Brito, A. M. M., Ramos, M. P. C., Oliveira, V., & Nantes-Cardoso, I. L. (2020). Increased stability of oligopeptidases immobilized on gold nanoparticles. Catalysts, 10(1), 78.

    Article  CAS  Google Scholar 

  168. Sahu, A., Badhe, P. S., Adivarekar, R., Ladole, M. R., & Pandit, A. B. (2016). Synthesis of glycinamides using protease immobilized magnetic nanoparticles. Biotechnol. Rep, 12, 13–25.

    Article  Google Scholar 

  169. Panda, S. K., Mishra, S. S., Kayitesi, E., & Ray, R. C. (2016). Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environmental Research, 146, 161–172.

    Article  CAS  PubMed  Google Scholar 

  170. Leisola, M., Jokela, J., Pastinen, O., Turunen, O., & Schoemaker, H. (2001). Industrial use of enzymes. Eolss Publishers.

    Google Scholar 

  171. Anwar, A., & Saleemuddin, M. (1998). Alkaline proteases: A review. Bioresource Technology, 64(3), 175–183.

    Article  CAS  Google Scholar 

  172. Samal, B. B., Karan, B., & Stabinsky, Y. (1990). Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnology and Bioengineering, 35(6), 650–652.

    Article  CAS  PubMed  Google Scholar 

  173. Yadav, S. K., Bisht, D., Shikha, S., & Darmwal, N. S. (2011). Oxidant and solvent stable alkaline protease from Aspergillus flavus and its characterization. African Journal of Biotechnology, 10(43), 8630–8640.

    Article  CAS  Google Scholar 

  174. Rao, K., & Narasu, M. L. (2007). Alkaline protease from Bacillus firmus 7728. Afr. j. biotechnol., 6(21).

  175. Benmrad, M. O., Moujehed, E., Elhoul, M. B., Mechri, S., Bejar, S., Zouari, R., ... & Jaouadi, B. (2018). Production, purification, and biochemical characterization of serine alkaline protease from Penicillium chrysogenium strain X5 used as excellent bio-additive for textile processing. Int. J. Biol. Macromol., 119, 1002-1016.

  176. Wahab, W. A. A., & Ahmed, S. A. (2018). Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA 2017. International Journal of Biological Macromolecules, 115, 447–458.

    Article  PubMed  Google Scholar 

  177. Dettmer, A., Cavalli, É., Ayub, M. A., & Gutterres, M. (2013). Environmentally friendly hide unhairing: Enzymatic hide processing for the replacement of sodium sulfide and delimig. Journal of Cleaner Production, 47, 11–18.

    Article  CAS  Google Scholar 

  178. Dayanandan, A., Kanagaraj, J., Sounderraj, L., Govindaraju, R., & Rajkumar, G. S. (2003). Application of an alkaline protease in leather processing: An ecofriendly approach. Journal of Cleaner Production, 11(5), 533–536.

    Article  Google Scholar 

  179. Ahmed, S. A., Al-domany, R. A., El-Shayeb, N. M., Radwan, H. H., & Saleh, S. A. (2008). Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Research Journal of Agriculture and Biological Sciences, 4(5), 434–446.

    CAS  Google Scholar 

  180. Kainoor, P. S., & Naik, G. R. (2010). Production and characterization of feather degrading keratinase from Bacillus sp. JB 99.

  181. Verma, A., Singh, H., Anwar, S., Chattopadhyay, A., Tiwari, K. K., Kaur, S., & Dhilon, G. S. (2017). Microbial keratinases: Industrial enzymes with waste management potential. Critical Reviews in Biotechnology, 37(4), 476–491.

    Article  CAS  PubMed  Google Scholar 

  182. Tapia, D. M., & Simões, M. L. G. (2008). Production and partial characterization of keratinase produced by a microorganism isolated from poultry processing plant wastewater. Afr. j. biotechnol., 7(3).

  183. Dominguez-Benetton, X., Srikanth, S., Satyawali, Y., Vanbroekhoven, K., & Pant, D. (2013). Enzymatic electrosynthesis: An overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J Microb Biochem Technol, 6, 007.

    Google Scholar 

  184. Donato, R. K., & Mija, A. (2020). Keratin associations with synthetic, biosynthetic and natural polymers: An extensive review. Polymers, 12(1), 32.

    Article  CAS  Google Scholar 

  185. Sionkowska, A., Kaczmarek, B., Michalska, M., Lewandowska, K., & Grabska, S. (2017). Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics. Pure and Applied Chemistry, 89(12), 1829–1839.

    Article  CAS  Google Scholar 

  186. Kojima, M., Kanai, M., Tominaga, M., Kitazume, S., Inoue, A., & Horikoshi, K. (2006). Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles, 10(3), 229–235.

    Article  CAS  PubMed  Google Scholar 

  187. Tork, S., Aly, M. M., & Nawar, L. (2010). Biochemical and molecular characterization of a new local keratinase producing Pseudomomanas sp., MS21. Asian J Biotechnol, 2(1), 1–13.

    Article  CAS  Google Scholar 

  188. Singhal, P., Nigam, V. K., & Vidyarthi, A. S. (2012). Studies on production, characterization and applications of microbial alkaline proteases. International Journal of Advanced Biotechnology and Research, 3(3), 653–669.

    CAS  Google Scholar 

  189. Raval, V. H., Purohit, M. K., & Singh, S. P. (2015). In Halophiles. (DK Maheshwari, M Saraf) Springer, Cham. pp. 421–449.

  190. Guo, C., Li, C., & Kaplan, D. L. (2020). Enzymatic degradation of Bombyx mori silk materials: A review. Biomacromolecules, 21(5), 1678–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Romsomsa, N., Chim-anagae, P., & Jangchud, A. (2010). Optimization of silk degumming protease production from Bacillus subtilis C4 using Plackett-Burman design and response surface methodology. Sci Asia, 36, 118–124.

    Article  CAS  Google Scholar 

  192. Chauhan, B., & Gupta, R. (2004). Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem, 39(12), 2115–2122.

    Article  CAS  Google Scholar 

  193. Chanalia, P., Gandhi, D., Jodha, D., & Singh, J. (2011). Applications of microbial proteases in pharmaceutical industry: An overview. Rev Med Microbiol, 22(4), 96–101.

    Article  Google Scholar 

Download references

Acknowledgements

Authors P. A. and R. V. kindly acknowledge the financial assistance and research grants under the “SHODH – Scheme of Developing High-Quality Research” fellowship by Department of Higher Education, Government of Gujarat Ref No: 201901380034 and UGC-BSR Start-Up Research Grant No.F.30-521/2020 by University Grants Commission, Government of India. The infrastructural support at the Department of Microbiology & Biotechnology, Gujarat University, Ahmedabad, is heartily acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram H. Raval.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read the manuscript and gave their consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, P.S., Yagnik, S.M., Rajput, K.N. et al. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 193, 4113–4150 (2021). https://doi.org/10.1007/s12010-021-03701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03701-x

Keywords

Navigation