Skip to main content

Advertisement

Log in

A Novel Rhizospheric Bacterium: Bacillus velezensis NKMV-3 as a Biocontrol Agent Against Alternaria Leaf Blight in Tomato

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel strain of Bacillus isolated from rhizosphere has shown to be an excellent biocontrol agent against various plant pathogens. In this study, a first report of a Bacillus strain NKMV-3 which effectively controls Alternaria solani, which cause the early blight disease in tomato. Based on the cultural and molecular sequencing of 16S rRNA gene sequence, the identity of the strain was confirmed as Bacillus velezensis NKMV-3. The presence of the lipopeptide which are antibiotic synthesis genes, namely iturin C, surfactin A and fengycin B and D, was confirmed through gene amplification. In addition, lipopeptides were also confirmed through liquid chromatography. The extract showed inhibitory effect against A. solani in vitro and detached tomato leaf assays. Bacillus velezensis strain NKMV-3-based formulations may provide an effective solution in controlling early blight disease in tomato and other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Awan, Z. A., & Shoaib, A. (2019). Combating early blight infection by employing Bacillus subtilis in combination with plant fertilizers. Current Plant Biology., 20, 100125. https://doi.org/10.1016/j.cpb.2019.100125

    Article  Google Scholar 

  2. Rubén, D., Gullon, P., Pateiro, M., Munekata, P. E. S., Zhang, W., & Lorenzo, J. M. (2020). Tomato as Potential Source of Natural Additives. Antioxidants, 9(1), 73.

    Article  Google Scholar 

  3. Viuda-Martos, M., Sanchez-Zapata, E., Sayas-Barberá, E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2014). Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Critical Reviews in Food Science and Nutrition, 54(8), 1032–1049. https://doi.org/10.1080/10408398.2011.623799

    Article  CAS  PubMed  Google Scholar 

  4. Garg, S., Ram Kumar, D., Yadav, S., Kumar, M., Yadav, J. (2020). Alternaria Blight of Tomato: A Review of Disease and Pathogen Management Approaches. Acta Scientific Agriculture, 4(11), 08–15. https://doi.org/10.31080/asag.2020.04.0908

  5. Adhikari, P., Oh, Y., Panthee, D. R. (2017). Current status of early blight resistance in tomato: An update. International Journal of Molecular Scienceshttps://doi.org/10.3390/ijms18102019

  6. Muthu-Pandian Chanthini, K., Senthil-Nathan, S., Soranam, R., Thanigaivel, A., Karthi, S., Sreenath Kumar, C., Kanagaraj Murali-Baskaran, R. (2019). Bacterial compounds, as biocontrol agent against early blight (Alternaria solani) and tobacco cut worm (Spodoptera litura Fab.) of tomato (Lycopersicon esculentum Mill.). Archives of Phytopathology and Plant Protection, https://doi.org/10.1080/03235408.2018.1496525

  7. Biswas, S. (2016). Integrated Disease Management of Early Blight in Tomato Caused by Alternaria Solani Sorauer.” https://krishikosh.egranth.ac.in/handle/1/5810035222.

  8. Chavan, V. A., Borkar, S. G. (2020). Strategies for Management of Fungicide Resistance in Tomato Leaf Blight Pathogen Alternaria Solani in 10 Districts of Western Maharashtra in India. Strate GSC Biological Pharmaceutical Sciences, 12(3), 180–188. https://doi.org/10.30574/gscbps.2020.12.3.0280

  9. Bauske, M. J., & Gudmestad, N. C. (2018). Parasitic Fitness of Fungicide-Resistant and -Sensitive Isolates of Alternaria Solani .Plant Disease, 102(3), 666–673. https://doi.org/10.1094/PDIS-08-17-1268-RE

    Article  CAS  PubMed  Google Scholar 

  10. Hassaan, M. A., El Nemr, A. (2020). Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egyptian Journal Aquatic Researchhttps://doi.org/10.1016/j.ejar.2020.08.007

  11. Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment International Journal of Environmental Research Public Health.  https://doi.org/10.3390/ijerph18031112

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hobbelen, P. H. F., Paveley, N. D., Van Den Bosch, F. (2014). The Emergence of Resistance to Fungicides. PLoS ONE, 9(3), 91910https://doi.org/10.1371/journal.pone.0091910

  13. Baibakova, E. V., Nefedjeva, E. E., Suska-Malawska, M., Wilk, M., Sevriukova, G. A., & Zheltobriukhov, V. F. (2019). Modern Fungicides: Mechanisms of Action, Fungal Resistance and Phytotoxic Effects. Annual Research & Review in Biology., 32(3), 1–16. https://doi.org/10.9734/arrb/2019/v32i330083

    Article  CAS  Google Scholar 

  14. Hollomon, D. W. (2015). Fungicide Resistance: Facing the Challenge – a Review. Plant Prot. Sci. 51(4), 170–176. https://doi.org/10.17221/42/2015-PPS

  15. Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00845

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heydari, A., & Pessarakli, M. (2010). A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists .Journal of Biological Sciences. https://doi.org/10.3923/jbs.2010.273.290

    Article  Google Scholar 

  17. Shafi, J., Tian, H., Ji, M. (2017). Bacillus Species as Versatile Weapons for Plant Pathogens: A Review. Biotechnol. Biotech. Equip., https://doi.org/10.1080/13102818.2017.1286950

  18. Andrić, S., Meyer, T., & Ongena, M. (2020). Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2020.01350

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rabbee, M. F., Baek, K.-H. (2020).Antimicrobial Activities of Lipopeptides and Polyketides of Bacillus Velezensis for Agricultural Applications. Molecules, 25(21). https://doi.org/10.3390/MOLECULES25214973

  20. Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., & Borriss, R. (2018). Bacillus Velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.02491

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, M., Wang, J., Liu, B., Zhu, Y., Xiao, R., Yang, W., & Chen, Z. (2020). Biocontrol of Tomato Bacterial Wilt by the New Strain Bacillus Velezensis FJAT-46737 and Its Lipopeptides. BMC Microbiology, 20(1), 1–12. https://doi.org/10.1186/s12866-020-01851-2

    Article  CAS  Google Scholar 

  22. Choi, T. G., Maung, C. E. H., Lee, D. R., Henry, A. B., Lee, Y. S., & Kim, K. Y. (2020). Role of Bacterial Antagonists of Fungal Pathogens, Bacillus Thuringiensis KYC and Bacillus Velezensis CE 100 in Control of Root-Knot Nematode, Meloidogyne Incognita and Subsequent Growth Promotion of Tomato. Biocontrol Science and Technology., 30(7), 685–700. https://doi.org/10.1080/09583157.2020.1765980

    Article  Google Scholar 

  23. Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., McInroy, J. A., & Lawrence, G. W. (2017). Biological Control of Meloidogyne Incognita by Spore-Forming Plant Growth-Promoting Rhizobacteria on Cotton. Plant Disease, 101(5), 774–784. https://doi.org/10.1094/PDIS-09-16-1369-RE

    Article  CAS  PubMed  Google Scholar 

  24. Shanmugam, V., Atri, K., Gupta, S., Kanoujia, N., & Naruka, D. S. (2011). Selection and Differentiation of Bacillus Spp. Antagonistic to Fusarium Oxysporum f.Sp. Lycopersici and Alternaria Solani Infecting Tomato. Folia Microbiologica, 56(2), 170–177. https://doi.org/10.1007/s12223-011-0031-3

    Article  CAS  PubMed  Google Scholar 

  25. Pane, C., & Zaccardelli, M. (2015). Evaluation of Bacillus Strains Isolated from Solanaceous Phylloplane for Biocontrol of Alternaria Early Blight of Tomato. Biological Control, 84, 11–18. https://doi.org/10.1016/j.biocontrol.2015.01.005

    Article  CAS  Google Scholar 

  26. Etebarian, H.-R., Sholberg, P. L., Eastwell, K. C., & Sayler, R. J. (2005). Biological Control of Apple Blue Mold with Pseudomonas Fluorescens. Canadian Journal of Microbiology., 51(7), 591–598. https://doi.org/10.1139/w05-039

    Article  CAS  PubMed  Google Scholar 

  27. Bergey, D., & John, G. H. (1994). Bergey’s manual of determinative bacteriology (9th ed.). Williams & Wilkins.

  28. White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. PCR protocols: a guide to methods and applications. (M. A. Innis, Ed.). San Diego: Academic Press.

  29. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution., 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Z., Guo, B., Wan, K., Cong, M., Huang, H., & Ge, Y. (2015). Effects of Bacteria-Free Filtrate from Bacillus Megaterium Strain L2 on the Mycelium Growth and Spore Germination of Alternaria Alternata. Biotechnology & Biotechnological Equipment., 29(6), 1062–1068. https://doi.org/10.1080/13102818.2015.1068135

    Article  CAS  Google Scholar 

  31. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S.-D., & Roberts, D. P. (2008). Isolation and Partial Characterization of Bacillus Subtilis ME488 for Suppression of Soilborne Pathogens of Cucumber and Pepper. Applied Microbiology and Biotechnology., 80(1), 115–123. https://doi.org/10.1007/s00253-008-1520-4

    Article  CAS  PubMed  Google Scholar 

  32. Płaza, G., Chojniak, J., Rudnicka, K., Paraszkiewicz, K., & Bernat, P. (2015). Detection of Biosurfactants in Bacillus Species: Genes and Products Identification..Journal of Applied Microbiology., 119(4), 1023–1034. https://doi.org/10.1111/jam.12893

    Article  CAS  PubMed  Google Scholar 

  33. Lin, L.-Z., Zheng, Q.-W., Wei, T., Zhang, Z.-Q., Zhao, C.-F., Zhong, H., & Guo, L.-Q. (2020). Isolation and Characterization of Fengycins Produced by Bacillus Amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens.Frontiers in Microbiology., 11, 579621. https://doi.org/10.3389/fmicb.2020.579621

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol Activity of the Endophytic Bacillus Amyloliquefaciens Strain CEIZ-11 against Pythium Aphanidermatum and Purification of Its Bioactive Compounds. Biological Control, 100, 54–62. https://doi.org/10.1016/j.biocontrol.2016.05.012

    Article  CAS  Google Scholar 

  35. Dhanarajan, G., Rangarajan, V., Sridhar, P. R., & Sen, R. (2016). Development and Scale-up of an Efficient and Green Process for HPLC Purification of Antimicrobial Homologues of Commercially Important Microbial Lipopeptides.ACS Sustainable Chemistry & Engineering., 4(12), 6638–6646. https://doi.org/10.1021/acssuschemeng.6b01498

    Article  CAS  Google Scholar 

  36. Sharma, D., Ansari, M. J., Gupta, S., Al Ghamdi, A., Pruthi, P., Pruthi, V. (2015). Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus Pumilus DSVP18 Grown on Potato Peels. Jundishapur Journal of Microbiology. 8(9). https://doi.org/10.5812/jjm.21257

  37. Ali, G. S., El-Sayed, A. S. A., Patel, J. S., Green, K. B., Ali, M., Brennan, M., & Norman, D. (2016). Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus Spp. Efficiently Controls Foliar Diseases Caused by Alternaria Spp.Applied and Environmental Microbiology., 82(2), 478–490. https://doi.org/10.1128/AEM.02662-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pansuriya, D., Poonam, P. S., & Mohammed, F. (2021). Early Blight (Alternaria Solani) Etiology, Morphology, Epidemiology and Management of Tomato: Review Article. Dipen, D., 10(5), 1423–1428.

    Google Scholar 

  39. Tomer, A., Uday Kiran Reddy, C., Diwivedi, S. K. (n.d.). A Review on Early Blight of Tomato Menacing Disease Caused by Alternaria Solani.European Journal of Molecular & Clinical Medicine.

  40. Deshmukh, Cd, D., Pb, K., Pr, B. (2020). Efficacy of Different Botanicals against the Alternaria Solani under in Vitro Conditions. Journal of Pharmacognosy and Phytochemistry. 9(6), 1986–1989.

  41. Akram, S., Umar, U. ud D., Atiq, R., Tariq, A., Mahmood, M. A., Ateeq-ur-Rehman. (2018). Emerging Resistance in Alternaria Solani Against Different Fungicides in Southern Punjab, Pakistan. Pakistan Journal of Life and Social Sciences. 16(2), 117–123.

  42. Bejarano, A., & Puopolo, G. (2020). Bioformulation of Microbial Biocontrol Agents for a Sustainable Agriculture.” In How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-53238-3_16

  43. Zhang, D., Yu, S., Yang, Y., Zhang, J., Zhao, D., Pan, Y., … Zhu, J. (2020).Antifungal Effects of Volatiles Produced by Bacillus Subtilis Against Alternaria Solani in Potato. Frontiers in Microbiology. 11. https://doi.org/10.3389/fmicb.2020.01196

  44. Meng, Q., Jiang, H., & Hao, J. J. (2016). Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 98, 18–26. https://doi.org/10.1016/j.biocontrol.2016.03.010

    Article  CAS  Google Scholar 

  45. Cui, L., Yang, C., Wei, L., Li, T., & Chen, X. (2020). Isolation and Identification of an Endophytic Bacteria Bacillus Velezensis 8-4 Exhibiting Biocontrol Activity against Potato Scab. Biological Control, 141, 104156. https://doi.org/10.1016/j.biocontrol.2019.104156

    Article  CAS  Google Scholar 

  46. Nam, M. H., Park, M. S., Kim, H. G., & Yoo, S. J. (2009). Journal of Microbiology. Biological Control of Strawberry Fusarium Wilt Caused by Fusarium Oxysporum f. Sp. Fragariae Using Bacillus Velezensis BS87 and RK1 Formulation. Biotechnology, 19(5), 520–524. https://doi.org/10.4014/jmb.0805.333

    Article  CAS  Google Scholar 

  47. Bafana, A., Chakrabarti, T., & Devi, S. S. (2008). Azoreductase and Dye Detoxification Activities of Bacillus Velezensis Strain AB. Applied Microbiology and Biotechnology., 77(5), 1139–1144. https://doi.org/10.1007/s00253-007-1212-5

    Article  CAS  PubMed  Google Scholar 

  48. Wang, C., Zhao, D., Qi, G., Mao, Z., Hu, X., Du, B., … Ding, Y. (2020). Effects of Bacillus Velezensis FKM10 for Promoting the Growth of Malus Hupehensis Rehd. and Inhibiting Fusarium Verticillioides. Frontiers in Microbiology. 10, 2889. https://doi.org/10.3389/fmicb.2019.02889

  49. Dhouib, H., Zouari, I., Ben Abdallah, D., Belbahri, L., Taktak, W., Triki, M. A., & Tounsi, S. (2019). Potential of a Novel Endophytic Bacillus Velezensis in Tomato Growth Promotion and Protection against Verticillium Wilt Disease. Biological Control, 139, 104092. https://doi.org/10.1016/j.biocontrol.2019.104092

    Article  CAS  Google Scholar 

  50. Chen, L., Heng, J., Qin, S., & Bian, K. (2018). A Comprehensive Understanding of the Biocontrol Potential of Bacillus Velezensis LM2303 against Fusarium Head Blight. PLoS ONE, 13(6), e0198560. https://doi.org/10.1371/journal.pone.0198560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VM: data acquisition, manuscript writing. BNV: data analysis. DM: proofreading; characterization. SRM: project guidance and correspondence.

Corresponding authors

Correspondence to Murthy Vignesh or Shankar Ramakrishanan Madhan Shankar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, M., Shankar, S.R.M., MubarakAli, D. et al. A Novel Rhizospheric Bacterium: Bacillus velezensis NKMV-3 as a Biocontrol Agent Against Alternaria Leaf Blight in Tomato. Appl Biochem Biotechnol 194, 1–17 (2022). https://doi.org/10.1007/s12010-021-03684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03684-9

Keywords

Navigation