Skip to main content
Log in

Modifying the Microenvironment of Epoxy Resin to Improve the Activity of Immobilized 7α-Hydroxysteroid Dehydrogenases

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

7α-Hydroxysteroid dehydrogenase (7α-HSDH) is one of the key enzymes in the catalytic reaction of taurochenodeoxycholic acid (TCDCA). To improve the activity of immobilized 7α-HSDH, the microenvironment of immobilized 7α-HSDH was modified with epoxy resin and ethanediamine (EDA). The amino-epoxy support was characterized by Fourier transform infrared (FTIR), Spectrometer elemental analysis (EA), scanning electron microscopy (SEM), contact angle (CA), and Zetasizer. The effects of the immobilization of 7α-HSDH on the amino-epoxy resin and epoxy resin were studied. The results indicated that the relative activity of immobilized 7α-HSDH on the amino-epoxy resin increased by approximately 80%. Meanwhile, the immobilized 7α-HSDH showed favorable thermal stability and operational stability. The thermal stability of immobilized 7α-HSDH increased at temperatures ranging from 15 to 35 °C, while the relative activities of 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin retained 56.4% and 61.0%. After 6 cycles, the residual activities of the 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin were 81.4% and 89.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Bakonyi, D., & Hummel, W. (2017). Cloning, expression, and biochemical characterization of a novel NADP+-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids. Enzyme and Microbial Technology, 99, 16–24.

    CAS  PubMed  Google Scholar 

  2. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, Á., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14(8), 2433–2462.

    CAS  PubMed  Google Scholar 

  3. Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435–456.

    CAS  PubMed  Google Scholar 

  4. Barsbay, M., Güven, O., & Kodama, Y. (2016). Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ-initiated RAFT polymerization. Radiation Physics and Chemistry, 124, 140–144.

    CAS  Google Scholar 

  5. Bayramoglu, G., Altintas, B., Yilmaz, M., & Arica, M. Y. (2011). Immobilization of chloroperoxidase onto highly hydrophilic polyethylene chains via bio-conjugation: catalytic properties and stabilities. Bioresource Technology, 102(2), 475–482.

    CAS  PubMed  Google Scholar 

  6. Bilal, M., Rasheed, T., Zhao, Y., Iqbal, H. M. N., & Cui, J. (2018). “Smart” chemistry and its application in peroxidase immobilization using different support materials. International Journal of Biological Macromolecules, 119, 278–290.

    CAS  PubMed  Google Scholar 

  7. Bilal, M., Cui, J., & Iqbal, H. M. N. (2019). Tailoring enzyme microenvironment: state-of-the-art strategy to fulfill the quest for efficient bio-catalysis. International Journal of Biological Macromolecules, 130, 186–196.

    CAS  PubMed  Google Scholar 

  8. Bolivar, J. M., & Nidetzky, B. (2019). The microenvironment in immobilized enzymes: methods of characterization and its role in determining enzyme performance. Molecules, 24, 3460.

    CAS  PubMed Central  Google Scholar 

  9. Bornscheuer, U. T. (2003). Immobilizing enzymes: how to create more suitable biocatalysts. Angewandte Chemie (International Ed. in English), 42(29), 3336–3337.

    CAS  Google Scholar 

  10. Chen, C. S., Bulkin, B. J., & Pearce, E. M. (1982). New epoxy resins. II. The preparation, characterization, and curing of epoxy resins and their copolymers. Journal of Applied Polymer Science, 27(9), 3289–3312.

    CAS  Google Scholar 

  11. Cui, J., & Jia, S. (2017). Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 352, 249–263.

    CAS  Google Scholar 

  12. Deshuai, L., Bochu, W., Jun, T., & Liancai, Z. (2014). Carboxyl-terminal and Arg38 are essential for activity of the 7α-hydroxysteroid dehydrogenase from Clostridium absonum. Protein & Peptide Letters, 21(9):894–900

  13. Donia, A., Atia, A., & Abouzayed, F. (2012). Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chemical Engineering Journal, 191, 22–30.

    CAS  Google Scholar 

  14. Duan, Z., He, H., Liang, W., Wang, Z., He, L., & Zhang, X. (2018). Tensile, quasistatic and dynamic fracture properties of nano-Al2O3-modified epoxy resin. Materials, 11(6), 905.

    PubMed Central  Google Scholar 

  15. Engel, S., Hock, H., Bocola, M., Keul, H., Schwaneberg, U., & Moller, M. (2016). CaLB catalyzed conversion of epsilon-caprolactone in aqueous medium. Part 1: immobilization of CaLB to microgels. Polymers, 8, 16.

    Google Scholar 

  16. Ferrandi, E. E., Bertolesi, G. M., Polentini, F., Negri, A., Riva, S., & Monti, D. (2012). In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α-and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Applied Microbiology and Biotechnology, 95(5), 1221–1233.

    CAS  PubMed  Google Scholar 

  17. Gao, B., Wang, X., & Shen, Y. (2006). Studies on characters of immobilizing penicillin G acylase on a novel composite support PEI/SiO 2. Biochemical Engineering Journal, 28(2), 140–147.

    CAS  Google Scholar 

  18. He, X. Y., Merz, G., Mehta, P., Schulz, H., & Yang, S. Y. (1999). Human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme. Characterization of a novel 17beta-hydroxysteroid dehydrogenase. Journal of Biological Chemistry, 274(21), 15014–15019.

    CAS  Google Scholar 

  19. Hildebrand, F., & Lütz, S. (2006). Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor. Tetrahedron: Asymmetry, 17(23), 3219–3225.

    CAS  Google Scholar 

  20. Ji, Q., Tan, J., Zhu, L., Lou, D., & Wang, B. (2016). Preparing tauroursodeoxycholic acid (TUDCA) using a double-enzyme-coupled system. Biochemical Engineering Journal, 105, 1–9.

    CAS  Google Scholar 

  21. Jin, F. L., Li, X., & Park, S. J. (2015). Synthesis and application of epoxy resins: a review. Journal of Industrial and Engineering Chemistry, 29, 1–11.

    CAS  Google Scholar 

  22. Klotzbach, T. L., Watt, M., Ansari, Y., & Minteer, S. D. (2008). Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion (R) polymers. Journal of Membrane Science, 311(1-2), 81–88.

    CAS  Google Scholar 

  23. Liu, C.-H., Lin, Y.-H., Chen, C.-Y., & Chang, J.-S. (2009). Characterization of Burkholderia lipase immobilized on celite carriers. Journal of the Taiwan Institute of Chemical Engineers, 40(4), 359–363.

    CAS  Google Scholar 

  24. Liu, K., Li, X.-f., Li, X.-m., He, B.-h., & Zhao, G.-l. (2010). Lowering the cationic demand caused by PGA in papermaking by solute adsorption and immobilized pectinase on chitosan beads. Carbohydrate Polymers, 82(3), 648–652.

    CAS  Google Scholar 

  25. Liu, J., Bai, S., Jin, Q., Zhong, H., Li, C., & Yang, Q. (2012). Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment. Langmuir, 28(25), 9788–9796.

    CAS  PubMed  Google Scholar 

  26. Liu, J., Peng, J., Shen, S., Jin, Q., Li, C., & Yang, Q. (2013). Enzyme entrapped in polymer-modified nanopores: the effects of macromolecular crowding and surface hydrophobicity. Chemistry--A European Journal, 19(8), 2711–2719.

    CAS  Google Scholar 

  27. Lou, D., Wang, B., Tan, J., Zhu, L., Cen, X., Ji, Q., & Wang, Y. (2016). The three-dimensional structure of Clostridium absonum 7α-hydroxysteroid dehydrogenase: new insights into the conserved arginines for NADP (H) recognition. Scientific Reports, 6(1), 22885.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma, H., Zhang, X., Ju, F., & Tsai, S. B. (2018). A study on curing kinetics of nano-phase modified epoxy resin. Scientific Reports, 8(1), 3045.

    PubMed  PubMed Central  Google Scholar 

  29. Manoel, E. A., Santos, J. C. S. D., Freire, D. M. G., Rueda, N., & Fernandez-Lafuente, R. (2015). Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 71, 53–57.

    CAS  PubMed  Google Scholar 

  30. Mateo, C., Grazú, V., Pessela, B., Montes, T., Palomo, J., Torres, R., López-Gallego, F., Fernández-Lafuente, R., & Guisán, J. (2007). Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochemical Society Transactions, 35(6), 1593–1601.

    CAS  PubMed  Google Scholar 

  31. Mateo, C., Grazu, V., Palomo, J. M., Lopez-Gallego, F., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2(5), 1022–1033.

    CAS  PubMed  Google Scholar 

  32. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    CAS  Google Scholar 

  33. Moeller, G., & Adamski, J. (2009). Integrated view on 17beta-hydroxysteroid dehydrogenases. Molecular and Cellular Endocrinology, 301(1-2), 7–19.

    CAS  PubMed  Google Scholar 

  34. Palomo, J. M., Munoz, G., Fernandezlorente, G., Mateo, C., & Fernandezlafuente, R. (2002). Interfacial adsorption of lipases on very hydrophobic support (Octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. Journal of Molecular Catalysis B: Enzymatic, 19, 279–286.

    Google Scholar 

  35. Peters, G. H., Svendsen, A., Langberg, H., Vind, J., Patkar, S. A., Toxvaerd, S., & Kinnunen, P. K. (1998). Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. Biochemistry, 37(36), 12375–12383.

    CAS  PubMed  Google Scholar 

  36. PragyanMohan. (2013). A critical review: the modification, properties, and applications of epoxy resins. Journal of Macromolecular Science: Part D - Reviews in Polymer Processing, 52, 107–125.

    Google Scholar 

  37. Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373, 1254–1278.

    CAS  Google Scholar 

  38. Sánchez, A., Cruz, J., Rueda, N., Santos, J. C. S. D., Torres, R., Ortiz, C., Villalonga, R., & Lafuente, R. F. (2016). Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Advances, 6(33), 27329–27334.

    Google Scholar 

  39. Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., & Damborsky, J. (2013). Strategies for stabilization of enzymes in organic solvents. ACS Catalysis, 3(12), 2823–2836.

    CAS  Google Scholar 

  40. Talbert, J. N., & Goddard, J. M. (2012). Enzymes on material surfaces. Colloids and Surfaces B: Biointerfaces, 93, 8–19.

    CAS  PubMed  Google Scholar 

  41. Tang, C. Y., Kwon, Y. N., & Leckie, J. O. (2009). Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes : I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 242, 149–167.

    CAS  Google Scholar 

  42. Torres, R., Mateo, C., Fernández-Lorente, G., Ortiz, C., Fuentes, M., Palomo, J. M., Guisan, J. M., & Fernández-Lafuente, R. (2003). A novel heterofunctional epoxy-amino sepabeads for a new enzyme immobilization protocol: immobilization-stabilization of β-galactosidase from Aspergillus oryzae. Biotechnology Progress, 19(3), 1056–1060.

    CAS  PubMed  Google Scholar 

  43. Wu, X., Hou, M., & Ge, J. (2015). Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarriers for enzyme immobilization. Catalysis Science & Technology, 5(12), 5077–5085. https://doi.org/10.1039/C5CY01181G.

    Article  CAS  Google Scholar 

  44. Yang, G., Wu, J., Xu, G., & Yang, L. (2009). Enhancement of the activity and enantioselectivity of lipase in organic systems by immobilization onto low-cost support. Journal of Molecular Catalysis B: Enzymatic, 57(1-4), 96–103.

    CAS  Google Scholar 

  45. Yang, Q., Wang, B., Zhang, Z., Lou, D., Tan, J., & Zhu, L. (2017). The effects of macromolecular crowding and surface charge on the properties of an immobilized enzyme: activity, thermal stability, catalytic efficiency and reusability. RSC Advances, 7(60), 38028–38036.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (2017ZX09301306-007) and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN202001427; KJ1601216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Yang or Bochu Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 14.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Li, L., Wang, B. et al. Modifying the Microenvironment of Epoxy Resin to Improve the Activity of Immobilized 7α-Hydroxysteroid Dehydrogenases. Appl Biochem Biotechnol 193, 925–939 (2021). https://doi.org/10.1007/s12010-020-03473-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03473-w

Keywords

Navigation