Skip to main content

Advertisement

Log in

Enhanced Enzymatic Hydrolysis and Structure Properties of Bamboo by Moderate Two-Step Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A moderate two-step pretreatment method was investigated to improve the enzymatic saccharification of bamboo residues. SEM and FTIR were employed to characterize the structure changes. Fed-batch enzymatic saccharification was performed to obtain high concentration of fermentable sugar. Bamboo was impregnated at low severity of conditions (room temperature, 2% H2SO4 or 2% NaOH, 48 h) to initially alter the structure of bamboo, and then further pretreated by steam explosion at 1.0 MPa for 6 min. The highest delignification of 51% and the highest enzymatic hydrolysis of 47.1% were reached at 2% NaOH impregnation followed by steam explosion. The changes in the structural characteristics showed beneficial effects on the enzymatic hydrolysis. When a mixer of cellulase (30 FPU) and β-glucosidase (10 CBU) was further used, the maximum enzymatic hydrolysis of 78.9% and total glucose yield of 68.2% were obtained. The maximum sugar release from the holocellulose was 500 mg/g bamboo, approximately 83.3% conversion efficiency based on monomeric sugar recovery. With fed-batch saccharification, a final substrate loading of 30% brought 107.7 g/L glucose, 35.81 g/L xylose, and 7.82 g/L arabinose release, respectively. This study provided an effective strategy for potential utilization of bamboo residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, J. S., Lee, Y. Y., & Kim, T. H. (2015). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48.

    Article  Google Scholar 

  2. Isikgor, F., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.

    Article  CAS  Google Scholar 

  3. Qing, Q., Huang, M., He, Y., Wang, L., & Zhang, Y. (2015). Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 177(7), 1493–1507.

    Article  CAS  Google Scholar 

  4. Xin, D. L., Yang, Z., Liu, F., Xu, X. R., & Zhang, J. H. (2015). Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresource Technology, 175, 529–536.

    Article  CAS  Google Scholar 

  5. Huang, C. X., Lin, W. Q., Lai, C. H., Li, X., Jin, Y. C., & Yong, Q. (2019). Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresource Technology, 285, 121355.

    Article  CAS  Google Scholar 

  6. Littlewood, J., Wang, L., Turnbull, C., & Murphy, R. J. (2013). Techno-economic potential of bioethanol from bamboo in China. Biotechnology for Biofuels, 6, 1–13.

    Article  Google Scholar 

  7. Scurlocka, J. M. O., Dayton, D. C., & Hames, B. (2000). Bamboo: an overlooked biomass resource? Biomass and Bioenergy, 19(4), 229–244.

    Article  Google Scholar 

  8. Li, Z., Jiang, Z., Fei, B., Yu, Y., & Cai, Z. (2012). Eective of microwave-KOH pretreatment on enzymatic hydrolysis of bamboo. Journal of Sustainable Bioenergy Systems, 2(04), 104–107.

    Article  CAS  Google Scholar 

  9. He, Y. C., Liu, F., Di, J.-H., Ding, Y., Zhu, Z.-Z., Wu, Y.-Q., Chen, L., Wang, C., Xue, Y. F., Chong, G. G., & Ma, C. L. (2016). Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycolmedia. Industrial Crops and Products, 81, 129–138.

    Article  CAS  Google Scholar 

  10. Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203, 364–369.

    Article  CAS  Google Scholar 

  11. He, M. H., Wang, J. L., Qin, H., Shui, Z. X., Zhua, Q. L., Wu, B., Tan, F. R., Pan, K., Hu, Q. C., Dai, L. C., Wang, W. G., Tang, X. Y., & Hu, G. Q. (2014). Bamboo: a new source of carbohydrate for biorefinery. Carbohydrate Polymers, 111, 645–654.

    Article  CAS  Google Scholar 

  12. Zeng, Y. N., Zhao, S., Yang, S. H., & Ding, S. Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 27, 38–45.

    Article  CAS  Google Scholar 

  13. Lin, W. Q., Chen, D. F., Yong, Q., Huang, C. X., & Huang, S. L. (2019). Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. Bioresource Technology, 293, 122055.

    Article  CAS  Google Scholar 

  14. Sun, S. L., Wen, J. L., Ma, M. G., & Sun, R. C. (2014). Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments. Applied Energy, 136, 519–526.

    Article  CAS  Google Scholar 

  15. Yamashita, Y., Shono, M., Sasaki, C., & Nakamura, Y. (2010). Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydrate Polymers, 79(4), 914–920.

    Article  CAS  Google Scholar 

  16. Sun, Z. Y., Tang, Y. Q., Tomohiro, I., Tomohiro, S., & Kenji, K. (2011). Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresource Technology, 102(23), 10929–10935.

    Article  CAS  Google Scholar 

  17. Yang, H., Shi, Z., Xu, G., Qin, Y., Deng, J., & Yang, J. (2019). Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresource Technology, 274, 261–266.

    Article  CAS  Google Scholar 

  18. Huang, C., Ma, J., Liang, C., Li, X., & Yong, Q. (2018). Influence of sulfur dioxide-ethanol-water pretreatment on the physicochemical properties and enzymatic digestibility of bamboo residues. Bioresource Technology, 263, 17–24.

    Article  CAS  Google Scholar 

  19. Determination of Structural Carbohydrates and Lignin in Biomass, Laboratory Analytical Procedure LAP Available from, wwwnrelgov/biomass/pdfs/42618pdf. Accessed Febrember 21, 2013.

  20. Xu, F., Shi, Y. C., Wu, X. R., Karnalin, T., Scott, S., & Wang, D. H. (2011). Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production. Bioprocess and Biosystems Engineering, 34(4), 485–492.

    Article  CAS  Google Scholar 

  21. Huang, C., Fang, G. G., Zhou, Y., Du, X. H., Yu, L. X., Meng, X. Z., Li, M., Yoo, C. G., Chen, B. W., Zhai, S. C., et al. (2020). Increasing the carbohydrate output of bamboo using a combinatorial pretreatment. ACS Sustainable Chemistry & Engineering, 8(19), 7380–7393.

    Article  CAS  Google Scholar 

  22. Baksi, S., Sarkar, U., Saha, S., Ball, A. K., Kuniyal, J. C., Wentzel, A., Birgen, C., Preisig, H. A., Wrttgens, B., & Markussen, S. (2019). Studies on delignification and inhibitory enzyme kinetics of alkaline peroxide pre-treated pine and deodar saw dust. Chemical Engineering and Processing, 143, 107607.

    Article  CAS  Google Scholar 

  23. Moodley, P., Sewsynker-Sukai, Y., & Kana, E. B. G. (2020). Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: potential for bioethanol production. Bioresource Technology, 310, 123372.

    Article  CAS  Google Scholar 

  24. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  Google Scholar 

  25. Tye, Y. Y., Lee, K. T., Abdullah, W. N. W., & Leh, C. P. (2015). Effects of process parameters of various pretreatments on enzymatic hydrolysability of ceiba pentandra (L.) gaertn. (kapok) fibre: a response surface methodology study. Biomass and Bioenergy, 75, 301–313.

    Article  CAS  Google Scholar 

  26. Morone, A., Pandey, R. A., & Chakrabarti, T. (2017). Comparative evaluation of organocat and selected advanced oxidation processes as pretreatment to enhance cellulose accessibility of rice straw. Journal of Environmental Chemical Engineering, 6(3), 3673–3680.

    Article  Google Scholar 

  27. Thi, S., & Lee, K. M. (2019). Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): cellulose digestibility, structural and morphology changes. Bioresource Technology, 282, 525–529.

    Article  CAS  Google Scholar 

  28. Ravindran, R., Jaiswal, S., Abughannam, N., & Jaiswal, A. K. (2017). Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste. Bioresource Technology, 239, 276–284.

    Article  CAS  Google Scholar 

  29. Maheswari, R. U., Mavukkandy, M. O., Adhikari, U., Naddeo, V., Sikder, J., & Arafat, H. A. (2020). Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties. Biomass and Bioenergy, 134, 105486.

    Article  Google Scholar 

  30. Tae, H. K., Jun, S. K., Sunwoo, C., & Lee, Y. Y. (2003). Pretreatment of corn stover by aqueous ammonia. Bioresource Technology, 90, 39–47.

    Article  Google Scholar 

  31. Gao, Y., Xu, J., Yuan, Z., Zhang, Y., Liu, Y., & Liang, C. (2014). Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresource Technology, 167, 41–45.

    Article  CAS  Google Scholar 

  32. Yu, Z. Y., Jameel, H., Chang, H. M., Philips, R., & Park, S. (2012). Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnology and Bioengineering, 109(5), 1131–1139.

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to express their gratitude for the financial support from the Special Funds for Basic Research Funding for Central public Welfare Scientific Institutes (CAFYBB2014QA023), Open Fund for Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration (JPELBCPI2019001), and National Science-technology Support Plan Projects (2014BAD02B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Xu, H., Jiang, J. et al. Enhanced Enzymatic Hydrolysis and Structure Properties of Bamboo by Moderate Two-Step Pretreatment. Appl Biochem Biotechnol 193, 1011–1022 (2021). https://doi.org/10.1007/s12010-020-03472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03472-x

Keywords

Navigation