Skip to main content
Log in

Metal-Organic Frameworks Conjugated Lipase with Enhanced Bio-catalytic Activity and Stability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Covalent immobilization of lipase onto a solid carrier is an effective way to enhance stability. Immobilization inhibits the activity of lipase due to decreased flexibility of enzyme structure via the covalent bond. In this study, monomer of the metal-organic frameworks (MOFs) material ZIF-8 (2-methyl imidazole-4-carboxylic acid) was innovatively used as a chemical modifier of Candida nrugosa lipase (CRL). The circular dichroism spectra results show that the CRL molecule was altered by chemical modification and thus its catalytic activity was 1.3 times higher than that of the free CRL. The modified CRL molecule was further immobilized in the “skeleton” of ZIF-8 through the monomer while in situ forming the cell skeleton of the MOFs, which prevent the active center from being destroyed. The results show that conjugation of chemical modification and immobilized enzymes ensure that there was no obvious reduction in the activity of CRL after immobilization and the stability of CRL was improved. Especially, the organic solvent stability of the modified immobilization CRL in isopropanol was significantly improved and retained more than 148% of its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He, H., Han, H., Shi, H., Tian, Y., Sun, F., Song, Y., et al. (2016). Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS Applied Materials & Interfaces, 37, 24517–24524.

    Article  Google Scholar 

  2. Akmoussi-Toumi, S., Khemili-Talbi, S., Ferioune, I., & Kebbouche-Gana, S. (2018). Purification and characterization of an organic solvent-tolerant and detergent-stable lipase from Haloferax mediterranei CNCMM 50101. International Journal of Biological Macromolecules, 116, 817–830.

    Article  CAS  Google Scholar 

  3. Xu, C., Yin, X., Zhang, C., Chen, H., Huang, H., & Hu, Y. (2018). Improving catalytic performance of Burkholderia cepacia lipase by chemical modification with functional ionic liquids. Chemical Research in Chinese Universities, 34, 279–284.

    Article  CAS  Google Scholar 

  4. Liang, H., Jiang, S., Yuan, Q., Li, G., Wang, F., Zhang, Z., & Liu, J. (2016). Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: Improved stability and an enzyme cascade for glucose detection. Nanoscale, 8(11), 6071–6078.

    Article  CAS  Google Scholar 

  5. Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 5, 4503–4513.

    Article  Google Scholar 

  6. Adeyemo, A. A., Adeoye, I. O., & Bello, O. S. (2017). Adsorption of dyes using different types of clay: a review. Applied Water Science, 7, 543–568.

    Article  CAS  Google Scholar 

  7. Siddiqui, K. S., & Cavicchioli, R. (2005). Improved thermal stability and activity in the cold-adapted lipase b from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles, 9(6), 471–476.

    Article  CAS  Google Scholar 

  8. Deng, H. T., Xu, Z. K., Liu, Z. M., Wu, J., Ye, P., & Seta, P. (2018). A comparative study on lipase immobilized polypropylene microfiltration membranes modified by sugar-containing polymer and polypeptide. Journal of Molecular Catalysis B: Enzymatic, 28, 95–100.

    Article  Google Scholar 

  9. Ru, J., Yi, H., Luo, L., Ling, J., Zou, B., & He, H. (2013). Enhancing catalytic performance of Porcine pancreatic lipase by covalent modification using functional ionic liquids. ACS Catalysis, 3(9), 1976–1983.

    Article  Google Scholar 

  10. Fernandezlopez, L., Pedrero, S. G., Lopezcarrobles, N., Gorines, B. C., Virgenortíz, J. J., & Fernandezlafuente, R. (2017). Effect of protein load on stability of immobilized enzymes. Enzyme and Microbial Technology, 98, 18–25.

    Article  CAS  Google Scholar 

  11. Cao, S. L., Huang, Y. M., Li, X. H., Xu, P., Wu, H., Li, N., et al. (2016). Preparation and characterization of immobilized lipase from Pseudomonas cepacia onto magnetic cellulose nanocrystals. Scientific Reports, 6, 20420.

    Article  CAS  Google Scholar 

  12. Nadar, S. S., & Rathod, V. K. (2017). Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-mof) with enhanced stability. International Journal of Biological Macromolecules, 95, 511.

    Article  CAS  Google Scholar 

  13. Zou, B., Song, C., Xu, X., Xia, J., Huo, S., & Cui, F. (2014). Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials. Applied Surface Science, 311, 62–67.

    Article  CAS  Google Scholar 

  14. Zou, B., Hu, Y., Jiang, L., Jia, R., & Huang, H. (2013). Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method. Industrial & Engineering Chemistry Research, 52, 2844–2851.

    Article  CAS  Google Scholar 

  15. Rueda, N., Dos Santos, J. C. S., Ortiz, C., Torres, R., Barbosa, O., Rodrigues, R. C., et al. (2016). Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities. The Chemical Record, 16(3), 1436–1455.

    Article  CAS  Google Scholar 

  16. Cheong, L. Z., Wei, Y., Wang, H., Wang, Z., Su, X., & Shen, C. (2017). Facile fabrication of a stable and recyclable lipase@amine-functionalized Zif-8 nanoparticles for esters hydrolysis and transesterification. Journal of Nanoparticle Research, 19, 280.

    Article  Google Scholar 

  17. Nadar, S. S., & Rathod, V. K. (2018). Encapsulation of lipase within the metal-organic framework (mof) with enhanced activity intensified under ultrasound. Enzyme and Microbial Technology, 108, 11–20.

    Article  CAS  Google Scholar 

  18. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85.

    Article  CAS  Google Scholar 

  19. Hu, Y., Yang, J., Jia, R., Ding, Y., & Huang, H. (2014). Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of candida rugosa lipase. Bioprocess and Biosystems Engineering, 37(8), 1617–1626.

    Article  CAS  Google Scholar 

  20. Chunyi, L., Zhuolie, H., Li, D., & Xiaolin, L. (2018). Improvement of enzymological properties of pepsin by chemical modification with chitooligosaccharides. International Journal of Biological Macromolecules, 118, 216–227.

    Article  Google Scholar 

  21. Liao, F. S., Lo, W. S., Hsu, Y. S., Wu, C. C., Wang, S. C., Shieh, F. K., et al. (2017). Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach. Journal of the American Chemical Society, 139, 6530–6533.

    Article  CAS  Google Scholar 

  22. Cao, S. L., Yue, D. M., Li, X., Smith, T. J., Li, N., Zong, M. H., et al. (2016). Novel nano/micro-biocatalyst: soybean epoxide hydrolase immobilized on uio-66-nh2 mof for efficient biosynthesis of enantipure (r)-1, 2-octanediol in deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 6, 3586–3595.

    Article  Google Scholar 

  23. Li, Z., Xia, H., Li, S., Pang, J., Zhu, W., & Jiang, Y. (2017). In-situ hybridization of enzymes and their metal-organic framework analogues with enhanced activity and stability by biomimetic mineralisation. Nanoscale, 9, 15298–15302.

    Article  CAS  Google Scholar 

  24. Xia, G. H., Cao, S. L., Xu, P., Li, X. H., Zhou, J., Zong, M. H., et al. (2017). Preparation of a nanobiocatalyst by efficiently immobilizing Aspergillus niger lipase onto magnetic metal-biomolecule frameworks (biomof). ChemCatChem, 9, 1794–1800.

    Article  CAS  Google Scholar 

  25. Wang, J., Zhao, G., & Yu, F. (2016). Facile preparation of fe3o4@mof core-shell microspheres for lipase immobilization. Journal of the Taiwan Institute of Chemical Engineers, 69, 139–145.

    Article  CAS  Google Scholar 

  26. Fiedler, S., Cole, L., & Keller, S. (2013). Automated circular dichroism spectroscopy for medium-throughput analysis of protein conformation. Analytical Chemistry, 85(3), 1868–1872.

    Article  CAS  Google Scholar 

  27. Nadar, S. S., & Rathod, V. K. (2017). Ultrasound assisted intensification of enzyme activity and its properties: a mini-review. World Journal of Microbiology and Biotechnology, 33, 170.

    Article  Google Scholar 

  28. Tran, T. T. T., Nguyen, K. T., & Le, V. V. M. (2018). Effects of ultrasonication variables on the activity and properties of alpha amylase preparation. Biotechnology Progress, 34(3), 702–710.

    Article  CAS  Google Scholar 

  29. Han, B., Cheng, G., Zhang, E., Zhang, L., & Wang, X. (2018). Three dimensional hierarchically porous zif-8 derived carbon/ldh core-shell composite for high performance supercapacitors. Electrochimica Acta, 263, 391–399.

    Article  CAS  Google Scholar 

  30. Xue-Mei, W., Zhong-Min, G., Hong, S., Hai-Lin, C., & Bing, Y. (2018). Preparation of c-zif-8 composite nanoparticles. Integrated Ferroelectrics, 188, 130–135.

    Article  Google Scholar 

  31. Shieh, F. K., Wang, S. C., Yen, C. I., Wu, C. C., Dutta, S., & Chou, L. Y. (2015). Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. Journal of the American Chemical Society, 137(13), 4276–4279.

    Article  CAS  Google Scholar 

  32. Lian, X., Chen, Y.-P., Liu, T.-F., & Zhou, H.-C. (2016). Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chemical Science, 7, 6969–6973.

    Article  CAS  Google Scholar 

  33. Deng, H. T., Xu, Z. K., Wu, J., Ye, P., Liu, Z. M., & Seta, P. (2018). A comparative study on lipase immobilized polypropylene microfiltration membranes modified by sugar-containing polymer and polypeptide. Journal of Molecular Catalysis B: Enzymatic, 28, 95–100.

    Article  Google Scholar 

  34. Wu, X., Yang, C., & Ge, J. (2017). Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and Bioprocessing, 4, 24.

    Article  Google Scholar 

  35. Kharrat, N., Ali, Y. B., Marzouk, S., Gargouri, Y. T., & Karra-Chaabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochemistry, 46, 1083–1089.

    Article  CAS  Google Scholar 

  36. Zou, B., Chu, Y., Xia, J., Chen, X., & Huo, S. (2017). Immobilization of lipase by ionic liquid-modified mesoporous sio2 adsorption and calcium alginate-embedding method. Applied Biochemistry and Biotechnology, 185, 606–618.

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the National Natural Science Foundation of China (No. 21406093), Natural Science Foundation of Jiangsu Province (BK20140529), Open Project Program of State Key Laboratory of Food Science and Technology of Jiangnan University (SKLF-KF-201919), Key University Science Research Project of Jiangsu Province (14KJB530001), China Postdoctoral Science Foundation (2014 M550271), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaojiao Xia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, B., Zhang, L., Xia, J. et al. Metal-Organic Frameworks Conjugated Lipase with Enhanced Bio-catalytic Activity and Stability. Appl Biochem Biotechnol 192, 132–145 (2020). https://doi.org/10.1007/s12010-020-03268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03268-z

Keywords

Navigation