Skip to main content
Log in

Preparation of DHA-Rich Medium- and Long-Chain Triacylglycerols by Lipase-Catalyzed Acidolysis of Microbial Oil from Schizochytrium sp.with Medium-Chain Fatty Acids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

DHA-rich medium- and long-chain triacylglycerols (MLCT) were produced by lipase-catalyzed acidolysis of microbial oil from Schizochytrium sp. with medium-chain fatty acids (MCFA). Four commercial lipases, i.e., NS40086, Novozym 435, Lipozyme RM IM, and Lipozyme TL IM were screened based on their activity and fatty acid specificity. The selected conditions for MLCT synthesis were Lipozyme RM IM as catalyst, reaction time 6 h, lipase load 8 wt%, substrate molar ratio (MCFA/microbial oil) 3:1, and temperature 55 °C. Under the selected conditions, the lipase could be reused successively for 17 cycles without significant loss of lipase activity. The obtained product contained 27.53% MCFA, 95.29% at sn-1,3 positions, and 44.70% DHA, 69.77% at sn-2 position. Fifty-nine types of triacylglycerols (TAG) were identified, in which 35 types of TAG contained MCFA, the content accounting for 55.35%. This product enriched with DHA at sn-2 position and MCFA at sn-1,3 positions can improve its digestion and absorption under an infant’s digestive system, and thus has potential to be used in infant formula to increase the bioavailability of DHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lauritzen, L., Brambilla, P., Mazzocchi, A., Harsløf, L., Ciappolino, V., & Agostoni, C. (2016). DHA effects in brain development and function. Nutrients, 8, 1–17.

    Google Scholar 

  2. Schuchardt, J. P., & Hahn, A. (2011). In D. Benton (Ed.), Lifetime nutritional influences on cognition, Behaviour and Psychiatric Illness (pp. 32–77). Philadelphia, PA: Woodhead Publishing.

  3. Fernandes, F. S., Sardinha, F. L. C., Badia-Villanueva, M., Carulla, P., Herrera, E., & Tavares do Carmo, M. G. (2012). Dietary lipids during early pregnancy differently influence adipose tissue metabolism and fatty acid composition in pregnant rats with repercussions on pup’s development. Prostaglandins, Leukotrienes and Essential Fatty Acids, 86, 167–174.

    CAS  Google Scholar 

  4. Guesnet, P., & Alessandri, J. M. (2011). Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)—implications for dietary recommendations. Biochimie, 93, 7–12.

    CAS  PubMed  Google Scholar 

  5. Calder, P. C. (2012). Mechanisms of action of (n-3) fatty acids. The Journal of Nutrition, 142, 592–599.

    Google Scholar 

  6. Lauritzen, L., Hansen, H. S., Jørgensen, M. H., & Michaelsen, K. F. (2001). The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Progress in Lipid Research, 40(1-2), 1–94.

    CAS  PubMed  Google Scholar 

  7. Martin, C. R., DaSilva, D. A., Cluette-Brown, J. E., DiMonda, C., Hamill, A., Bhutta, A. Q., Coronel, E., Wilschanski, M., Stephens, A. J., Driscoll, D. F., Bistrian, B. R., Ware, J. H., Zaman, M. M., & Freedman, S. D. (2011). Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. The Journal of Pediatrics, 159, 743–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Heird, W. C. (2001). The role of polyunsaturated fatty acids in term and preterm infants and breastfeeding mothers. Pediatric Clinics of North America, 48, 173–188.

    CAS  PubMed  Google Scholar 

  9. Brenna, J. T., Varamini, B., Jensen, R. G., Diersen-Schade, D. A., Boettcher, J. A., & Arterburn, L. M. (2007). Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. The American Journal of Clinical Nutrition, 85, 1457–1464.

    CAS  PubMed  Google Scholar 

  10. Ballard, O., & Morrow, A. L. (2013). Human milk composition: nutrients and bioactive factors. Pediatric Clinics of North America, 60(1), 49–74.

    PubMed  PubMed Central  Google Scholar 

  11. Zou, X. Q., Guo, Z., Huang, J. H., Jin, Q. Z., Cheong, L. Z., Wang, X. G., & Xu, X. B. (2012). Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization. Journal of Agricultural and Food Chemistry, 60(29), 7158–7167.

    CAS  PubMed  Google Scholar 

  12. Soumanou, M. M., Pérignon, M., & Villeneuve, P. (2013). Lipase-catalyzed interesterification reactions for human milk fat substitutes production: a review. European Journal of Lipid Science and Technology, 115, 270–285.

    CAS  Google Scholar 

  13. Xu, X. B. (2000). Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. European Journal of Lipid Science and Technology, 102, 287–303.

    CAS  Google Scholar 

  14. Zou, X., Ali, A. H., Abed, S. M., & Guo, Z. (2017). Current knowledge of lipids in human milk and recent innovations in infant formulas. Current Opinion in Food Science, 16, 28–39.

    Google Scholar 

  15. Jensen, R. G. (1996). The lipids in human milk. Progress in Lipid Research, 35(1), 53–92.

    CAS  PubMed  Google Scholar 

  16. Zou, L., Pande, G., & Akoh, C. C. (2016). Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annual Review of Food Science and Technology, 7, 139–165.

    CAS  PubMed  Google Scholar 

  17. Uauy, R., Hoffman, D. R., Mena, P., Llanos, A., & Birch, E. E. (2003). Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials. The Journal of Pediatrics, 143, 17–25.

    Google Scholar 

  18. Hoffman, D. R., Birch, E. E., Castañeda, Y. S., Fawcett, S. L., Wheaton, D. H., Birch, D. G., & Uauy, R. (2003). Visual function in breast-fed term infants weaned to formula with or without long-chain polyunsaturates at 4 to 6 months: a randomized clinical trial. The Journal of Pediatrics, 142, 669–677.

    CAS  PubMed  Google Scholar 

  19. Innis, S. M., Adamkin, D. H., Hall, R. T., Kalhan, S. C., Lair, C., Lim, M., Stevens, D. C., Twist, P. F., Diersen-Schade, D. A., Harris, C. L., Merkel, K. L., & Hansen, J. W. (2002). Docosahexaenoic acid and arachidonic acid enhance growth with no adverse effects in preterm infants fed formula. The Journal of Pediatrics, 140(5), 547–554.

    CAS  PubMed  Google Scholar 

  20. Bourlieu, C., Ménard, O., Bouzerzour, K., Mandalari, G., Macierzanka, A., Mackie, A. R., & Dupont, D. (2014). Specificity of infant digestive conditions: some clues for developing relevant in vitro models. Critical Reviews in Food Science and Nutrition, 54(11), 1427–1457.

    PubMed  Google Scholar 

  21. Armand, M., Hamosh, M., Mehta, N. R., Angelus, P. A., Philpott, J. R., Henderson, T. R., Dwyer, N. K., Lairon, D., & Hamosh, P. (1996). Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatric Research, 40(3), 429–437.

    CAS  PubMed  Google Scholar 

  22. Liu, Z., Cocks, B. G., & Rochfort, S. (2016). Comparison of molecular species distribution of dha-containing triacylglycerols in milk and different infant formulas by liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 64(10), 2134–2144.

    CAS  PubMed  Google Scholar 

  23. Daniela, G., Claudio, M., Valeria, G., Riccardo, A., Federica, D. B., & Claudio, B. (2011). HPLC-APCI analysis of triacylglycerols in milk fat from different sources. European Journal of Lipid Science and Technology, 113, 197–207.

    Google Scholar 

  24. Osborn, H. T., & Akoh, C. C. (2002). Structured lipids-novel fats with medical, nutraceutical, and food applications. Comprehensive Reviews in Food Science and Food Safety, 1, 110–120.

    Google Scholar 

  25. Liu, W., Liu, W. L., Liu, C. M., Liu, J. H., Yang, S. B., Zheng, H. J., Lei, H. W., Ruan, R., Li, T., Tu, Z. C., & Song, X. Y. (2011). Medium-chain fatty acid nanoliposomes for easy energy supply. Nutrition, 27(6), 700–706.

    PubMed  Google Scholar 

  26. Metges, C. C., & Wolfram, G. (1991). Medium and long chain triglycerides labeled with 13C: a comparison of oxidation after oral or parenteral administration in humans. The Journal of Nutrition, 121(1), 31–36.

    CAS  PubMed  Google Scholar 

  27. Zhou, S. M., Wang, Y. Q., Jacoby, J. J., Jiang, Y. R., Zhang, Y. Q., & Yu, L. L. L. (2017). Effects of medium-and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J mice. Journal of Agricultural and Food Chemistry, 65(31), 6599–6607.

    CAS  PubMed  Google Scholar 

  28. Hu, J. N., Shen, J. R., Xiong, C. Y., Zhu, X. M., & Deng, Z. Y. (2018). Investigation of lipid metabolism by a new structured lipid with medium- and long-chain triacylglycerols from cinnamomum camphora seed oil in healthy C57BL/6J mice. Journal of Agricultural and Food Chemistry, 66(8), 1990–1998.

    CAS  PubMed  Google Scholar 

  29. Lee, Y., Tang, T., & Lai, O. (2012). Health benefits, enzymatic production, and application of medium- and long-chain triacylglycerol (MLCT) in food industries: a review. Journal of Food Science, 77, 137–144.

    Google Scholar 

  30. Jennings, B. H., & Akoh, C. C. (2001). Lipase-catalyzed modification of fish oil to incorporate capric acid. Food Chemistry, 72, 273–278.

    CAS  Google Scholar 

  31. Fritsche, K. (2007). Important differences exist in the dose–response relationship between diet and immune cell fatty acids in humans and rodents. Lipids, 42(11), 961–979.

    CAS  PubMed  Google Scholar 

  32. Jacobs, M. N., Covaci, A., Gheorghe, A., & Schepens, P. (2004). Time trend investigation of pcbs, pbdes, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements. Journal of Agricultural and Food Chemistry, 52(6), 1780–1788.

    CAS  PubMed  Google Scholar 

  33. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11), 807–815.

    CAS  PubMed  Google Scholar 

  34. Zou, X. Q., Huang, J. H., Jin, Q. Z., Liu, Y. F., Tao, G. J., Cheong, L. Z., & Wang, X. G. (2012). Preparation of human milk fat substitutes from palm stearin with arachidonic and docosahexaenoic acid: combination of enzymatic and physical methods. Journal of Agricultural and Food Chemistry, 60(37), 9415–9423.

    CAS  PubMed  Google Scholar 

  35. Xu, X., Skands, A. R. H., Høy, C. E., Mu, H., Balchen, S., & Adler-Nissen, J. (1998). Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design. Journal of the American Oil Chemists Society, 75, 1179.

    CAS  Google Scholar 

  36. Rangheard, M. S., Langrand, G., Triantaphylides, C., & Baratti, J. (1989). Multi-competitive enzymatic reactions in organic media: a simple test for the determination of lipase fatty acid specificity. Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects, 1004, 20–28.

    CAS  Google Scholar 

  37. He, Y., Li, J., Kodali, S., Chen, B., & Guo, Z. (2016). The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols. Bioresource Technology, 219, 466–478.

    CAS  PubMed  Google Scholar 

  38. Zou, X., Jin, Q., Guo, Z., Huang, J., Xu, X., & Wang, X. (2016). Preparation of 1, 3-dioleoyl-2-palmitoylglycerol-rich structured lipids from basa catfish oil: combination of fractionation and enzymatic acidolysis. European Journal of Lipid Science and Technology, 118, 708–715.

    CAS  Google Scholar 

  39. Cleland, W. W. (1963). The kinetics of enzyme-catalyzed reactions with two or more substrates or products: I. nomenclature and rate equations. Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects, 67, 104–137.

    CAS  Google Scholar 

  40. Abed, S. M., Zou, X. Q., Ali, A. H., Jin, Q. Z., & Wang, X. G. (2017). Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina. Bioresource Technology, 243, 448–456.

    CAS  PubMed  Google Scholar 

  41. Iwasaki, Y., & Yamane, T. (2000). Enzymatic synthesis of structured lipids. Journal of Molecular Catalysis B: Enzymatic, 10, 129–140.

    CAS  Google Scholar 

  42. Yankah, V. V., & Akoh, C. C. (2000). Lipase-catalyzed acidolysis of tristearin with oleic or caprylic acids to produce structured lipids. Journal of the American Oil Chemists Society, 77, 495–500.

    CAS  Google Scholar 

  43. Wang, J., Wang, X. D., Zhao, X. Y., Liu, X., Dong, T., & Wu, F. A. (2015). From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. Bioresource Technology, 184, 405–414.

    CAS  PubMed  Google Scholar 

  44. Yeh, A., Kruse, S. E., Marcinek, D. J., & Gallagher, E. P. (2015). Effect of omega-3 fatty acid oxidation products on the cellular and mitochondrial toxicity of BDE 47. Toxicology In Vitro, 29(4), 672–680.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed by the National Natural Science Foundation of China (31601433) and Jiangsu Provincial Natural Science Foundation (BK20140149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Zou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Ye, L., He, X. et al. Preparation of DHA-Rich Medium- and Long-Chain Triacylglycerols by Lipase-Catalyzed Acidolysis of Microbial Oil from Schizochytrium sp.with Medium-Chain Fatty Acids. Appl Biochem Biotechnol 191, 1294–1314 (2020). https://doi.org/10.1007/s12010-020-03261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03261-6

Keywords

Navigation