Skip to main content
Log in

Biosynthesis of a Phycocyanin Beta Subunit with Two Noncognate Chromophores in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant phycobiliprotein can be used as fluorescent label in immunofluorescence assay. In this study, pathway for phycocyanin beta subunit (CpcB) carrying noncognate chromophore phycoerythrobilin (PEB) and phycourobilin (PUB) was constructed in Escherichia coli. Lyase CpcS and CpcT could catalyze attachment of PEB to Cys84-CpcB and Cys155-CpcB, respectively. However, PEB was attached only to Cys84-CpcB when both CpcS and CpcT were present in E. coli. A dual plasmid expression system was used to control the expression of lyases and the attachment order of PEB to CpcB. The production of PEB-Cys155-CpcB was achieved by L-arabinose-induced expression of CpcS, CpcB, Ho1, and PebS, and then the attachment of PEB to Cys84-CpcB was achieved by IPTG-induced expression of CpcS. The doubly chromophorylated CpcB absorbed light maximally at 497.5 nm and 557.0 nm and fluoresced maximally at 507.5 nm and 566.5 nm. An amount of light energy absorbed by PUB-Cys155-CpcB is transferred to PEB-Cys84-CpcB in doubly chromophorylated CpcB, conferring a large stokes shift of 69 nm for this fluorescent protein. There are interactions between chromophores of CpcB which possibly together with the help of lyases lead to isomerization of PEB-Cys155-CpcB to PUB-Cys155-CpcB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adir, N., Dines, M., Klartag, M., McGregor, A., & Melamed-Frank, M. (2006). Assembly and disassembly of phycobilisomes. In J. M. Shively (Ed.), Complex intracellular structures in prokaryotes (pp. 47–77). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  2. Glazer, A. N. (1994). Phycobiliproteins - a family of valuable, widely used fluorophores. Journal of Applied Phycology, 6, 105–112.

    Article  CAS  Google Scholar 

  3. Juin, C., Chérouvrier, J. R., Thiéry, V., Gagez, A. L., Bérard, J. B., Joguet, N., Kaas, R., Cadoret, J. P., & Picot, L. (2015). Microwave-assisted extraction of phycobiliproteins from Porphyridium purpureum. Applied Biochemistry and Biotechnology, 175(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  4. Scheer, H., & Zhao, K. H. (2008). Biliprotein maturation: The chromophore attachment. Molecular Microbiology, 68(2), 263–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saunée, N. A., Williams, S. R., Bryant, D. A., & Schluchter, W. M. (2008). Biogenesis of phycobiliproteins: II. cpcS-I and cpcU comprise the heterodimeric Bilin lyase that attaches phycocyanobilin to cys-82 of beta-phycocyanin and cys-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. Journal of Biological Chemistry, 283(12), 7513.

    Article  PubMed  Google Scholar 

  6. Shen, G., Schluchter, W. M., & Bryant, D. A. (2008). Biogenesis of phycobiliproteins I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for β-phycocyanin and allophycocyanin subunits. Journal of Biological Chemistry, 283(12), 7503–7512.

    Article  CAS  PubMed  Google Scholar 

  7. Shen, G., Saunée, N. A., Williams, S. R., Gallo, E. F., Schluchter, W. M., & Bryant, D. A. (2006). Identification and characterization of a new class of Bilin lyase the cpcT gene encodes a Bilin lyase responsible for attachment of phycocyanobilin to cys-153 on the β-subunit of phycocyanin in Synechococcus sp. PCC 7002. Journal of Biological Chemistry, 281(26), 17768–17778.

    Article  CAS  PubMed  Google Scholar 

  8. Tooley, A. J., Cai, Y. A., & Glazer, A. N. (2001). Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-α subunit in a heterologous host. Proceedings of the National Academy of Sciences, 98(19), 10560–10565.

    Article  CAS  Google Scholar 

  9. Guan, X., Qin, S., Su, Z., Zhao, F., Ge, B., Li, F., & Tang, X. (2007). Combinational biosynthesis of a fluorescent cyanobacterial holo-α-phycocyanin in Escherichia coli by using one expression vector. Applied Biochemistry and Biotechnology, 142(1), 52–59.

    Article  CAS  PubMed  Google Scholar 

  10. Biswas, A., Vasquez, Y. M., Dragomani, T. M., Kronfel, M. L., Williams, S. R., Alvey, R. M., Bryant, D. A., & Schluchter, W. M. (2010). Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: Chromophorylation efficiency and specificity of all Bilin lyases from Synechococcus sp. strain pcc 7002. Applied and Environmental Microbiology, 76(9), 2729–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alvey, R. M., Biswas, A., Schluchter, W. M., & Bryant, D. A. (2011). Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry., 50(22), 4890–4902.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, J., Chen, H., Zhao, J., & Jiang, P. (2017). Fusion proteins of streptavidin and allophycocyanin alpha subunit for immunofluorescence assay. Biochemistry Engineering Journal., 125, 97–103.

    Article  CAS  Google Scholar 

  13. Tang, K., Zeng, X., Yang, Y., Wang, Z., Wu, X., Zhou, M., Noy, D., Scheer, H., & Zhao, K. (2012). A minimal phycobilisome: Fusion and chromophorylation of the truncated core-membrane linker and phycocyanin. Biochimica et Biophysica Acta, 1817(7), 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  14. Ge, B., Lin, X., Yao, C., Wang, X., Chen, H., Peng, J., & Huang, F. (2017). Combinational biosynthesis of dual-functional streptavidin-phycobiliproteins for high-throughput-compatible immunoassay. Process Biochemistry S1359511317300569.

  15. Sauer, K., & Scheer, H. (1988). Excitation transfer in c-phycocyanin. förster transfer rate and exciton calculations based on new crystal structure data for c-phycocyanins from agmenellum quadruplicatum, and mastigocladus laminosus. BBA - Bioenergetics, 936(2), 157–170.

    Article  CAS  Google Scholar 

  16. Zhao, K., Zhang, J., Tu, J., Böhm, S., Plöscher, M., Eichacker, L., Bubenzer, C., Scheer, H., Wang, X., & Zhou, M. (2007). Lyase activities of CpcS- and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin beta-subunits. Journal of Biological Chemistry, 282(47), 34093–34103.

    Article  CAS  PubMed  Google Scholar 

  17. Shukla, A., Biswas, A., Blot, N., Partensky, F., Karty, J. A., Hammad, L. A., Garczarek, L., Gutu, A., Schluchter, W. M., & Kehoe, D. M. (2012). Phycoerythrin-specific Bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 20136–20141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blot, N., Wu, X., Thomas, J. C., Zhang, J., Garczarek, L., Böhm, S., Tu, J., Zhou, M., Plöscher, M., Eichacker, L., Partensky, F., Scheer, H., & Zhao, K. (2009). Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. Journal of Biological Chemistry, 284(14), 9290–9298.

    Article  CAS  PubMed  Google Scholar 

  19. Sanfilippo, J. E., Nguyen, A. A., Garczarek, L., Karty, J. A., Pokhrel, S., Strnat, J. A., Partensky, F., Schluchter, W. M., & Kehoe, D. M. (2019). Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6457–6462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, J., Chen, H., & Jiang, P. (2018). Chromophore attachment to fusion protein of streptavidin and recombinant allophycocyanin α subunit. Bioengineered, 9(1), 108–115.

    Article  CAS  PubMed  Google Scholar 

  21. Glazer, A. N., & Hixson, C. S. (1975). Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. Journal of Biological Chemistry, 250(14), 5487–5495.

    CAS  PubMed  Google Scholar 

  22. Glazer, A. N., & Hixson, C. S. (1977). Subunit structure and chromophore composition of Rhodophytan phycoerythrins. Journal of Biological Chemistry, 252(1), 32–42.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Key R&D program of Shandong Province (2019GHY112020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxin Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participant or animal performed by authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zheng, C., Jiang, P. et al. Biosynthesis of a Phycocyanin Beta Subunit with Two Noncognate Chromophores in Escherichia coli. Appl Biochem Biotechnol 191, 763–771 (2020). https://doi.org/10.1007/s12010-019-03219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03219-3

Keywords

Navigation