Skip to main content
Log in

Chemoenzymatic Synthesis of Furfuryl Alcohol from Biomass in Tandem Reaction System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, chemoenzymatic synthesis of furfuryl alcohol from biomass (e.g., corncob, bamboo shoot shell, and rice straw) was attempted by the tandem catalysis with Lewis acid (SnCl4 or solid acid SO42−/SnO2-bentonite) and biocatalyst in one-pot manner. Compared with SnCl4, solid acid SO42−/SnO2-bentonite had higher catalytic activity for converting biomass into furfural, which could be biologically converted into furfuryl alcohol with Escherichia coli CCZU-H15 whole-cell harboring reductase activity. Sequential catalysis of biomass into furfural with SO42−/SnO2-bentonite (3.0 wt%) at 170 °C for 0.5 h and bioreduction of furfural with whole cells at 30 °C for 4.5 h were used for the effective synthesis of furfuryl alcohol in one-pot media. Corncob, bamboo shoot shell, and rice straw (3.0 g, dry weight) could be converted into 65.7, 50.3, and 58.5 mM furfuryl alcohol with the yields of 0.26, 0.25, and 0.23 g furfuryl alcohol/(g xylan in biomass) in 40 mL reaction media. Finally, an efficient process of recycling and reusing of SO42−/SnO2-bentonite catalyst and immobilized whole-cell biocatalyst was developed for the chemoenzymatic synthesis of furfuryl alcohol from biomass in the one-pot reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dai, L., Liu, Y., Ruan, R., & Yu, Z. (2017). Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresource Technology, 225, 1–8.

  2. Ran, H., Zhang, J., Gao, Q., Lin, Z., & Bao, J. (2014). Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural byAmorphotheca resinae ZN1 Biotechnology for Biofuels, 7, 51.

  3. Maurelli, L., Ionata, E., La Cara, F., & Morana, A. (2013). Chestnut shell as unexploited source of fermentable sugars: Effect of different pretreatment methodson enzymatic saccharification. Applied Biochemistry and Biotechnology, 170, 1104–1118.

  4. Li, X., Chen, S., Yang, Y., Wang, S., & Jin, M. (2019). Ethanol production from mixtures of Distiller's Dried Grains with Solubles (DDGS) and corn.Industrial Crops and Products, 129, 59–66.

  5. Xue, X. X., Di, J. H., He, Y. C., Wang, B. Q., & Ma, C. L. (2018). Effective utilization of carbohydrate in corncob to synthesize furfuralcohol by chemical-enzymatic catalysis in toluene-water media. Applied Biochemistry and Biotechnology, 185(1), 42–54.

    Article  CAS  Google Scholar 

  6. Shi, Y., Chai, L., Tang, C., Yang, Z., Zheng, Y., Chen, Y., & Jing, Q. (2013). Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess and Biosystems Engineering, 36, 1957–1965.

  7. Unrean, P. (2017). Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery. Bioprocess and Biosystems Engineering, 40, 611–623.

  8. Wang, F., Jiang, Y., Guo, W., Niu, K., Zhang, R., Hou, S., Wang, M., Yi, Y., Zhu, C., Jia, C., & Fang, X. (2016). An environmentally friendly and productiveprocess for bioethanol production from potato waste. Biotechnology for Biofuels, 9, 50.

  9. Zhang, L., Fu, L., Wang, H., & Yang, B. (2017). Discovery of cellulose surface layer conformation by nonlinear vibrational spectroscopy.Scientific Reports, 7, 44319.

  10. Choudhary, V., Pinar, A. B., Sandler, S. I., Vlachos, D. G., & Lobo, R. F. (2011). Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catalysis, 1, 1724–1728.

  11. Daengprasert, W., Boonnoun, P., Laosiripojana, N., Goto, M., & Shotipruk, A. (2011). Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural.Industrial and Engineering Chemistry Research, 50, 7903–7910.

  12. Kim, E. S., Liu, S., Abu-Omar, M. M., & Mosier, N. S. (2012). Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating. Energy & Fuels, 26, 1298–1304.

  13. Liu, Z. L., Slininger, P. J., & Gorsich, S. W. (2005). Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Applied Biochemistry and Biotechnology, 121-124, 451–460.

  14. Li, Y. M., Zhang, X. Y., Li, N., Xu, P., Lou, W. Y., & Zong, M. H. (2017). Biocatalytic reduction of HMF to 2,5-bis (hydroxymethyl) furan by HMF-tolerant whole cells. ChemSusChem, ChemSusChem, 10, 372–378.

  15. Wang, W. J., Li, H. L., Ren, J. L., Sun, R. C., Zheng, J., Sun, G. W., & Liu, S. J. (2014). Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Journal of Catalysis, 35, 741–747.

  16. Mandalika, A., Qin, L., Satob, T. K., & Runge, T. (2014). Integrated biorefinery model based on production of furans using open-ended high yield processes. Green Chemistry, 16, 2480–2489.

  17. O’Driscoll, Á., Leahy, J. J., & Curtin, T. (2017). The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol. Catalysis Today, 279, 194–201.

  18. Paulino, P. N., Perez, R. F., Figueiredoc, N. G., & Fraga, M. A. (2017). Tandem dehydration–transfer hydrogenation reactions of xylose to furfuryl alcohol over zeolite catalysts. Green Chemistry, 19, 3759–3763.

  19. Perez, R. F., & Fraga, M. A. (2014). Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose. Green Chemistry, 16, 3942–3950.

  20. Chen, X. F., Li, H. X., Luo, H. S., & Qiao, M. H. (2002). Liquid phase hydrogenation of furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalysts. Applied Catalysis A: General, 233, 13–20.

  21. Liu, D. X., Zemlyanov, D., Wu, T., Lobo-Lapidus, R. J., Dumesic, J. A., Miller, J. T., & Marshall, C. L. (2013). Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde. Journal of Catalysis, 299, 336–345.

  22. Merlo, A. B., Vetere, V., Ruggera, J. F., & Casella, M. L. (2009). Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. Catalysis Communications, 10, 1665–1669.

  23. Kim, M. S., Simanjuntak, F. S. H., Lim, S., Jae, J., Ha, J. M., & Lee, H. (2017). Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. Journal of Industrial and Engineering Chemistry, 52, 59–65.

  24. Diaz de Villegas, M. E., Villa, P., Guerra, M., Rodriguez, E., Redondo, D., & Martinez, A. (1992). Conversion of furfural into furfuryl alcohol by Saccharomyces cervisiae 354. Acta Biotechnologica, 12, 351–354.

  25. Gutiérrez, T., Buszko, M. L., Ingram, L. O., & Preston, J. F. (2002). Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Applied Biochemistry and Biotechnology, 38, 327–340.

  26. Kroutil, W., Mang, H., Edegger, K., & Kurt, F. (2004). Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Current Opinion in Biotechnology, 8, 120–126.

  27. Gong, X. M., Qin, Z., Li, F. L., Zeng, B. B., Zheng, G. W., & Xu, J. H. (2019). Development of an engineered ketoreductase with simultaneously improved thermostability and activity for making a bulky Atorvastatin precursor. ACS Catalysis, 9, 147–153.

  28. Zheng, G. W., Liu, Y. Y., Chen, Q., Huang, L., Yu, H. L., Lou, W. Y., Li, C. X., Bai, Y. P., Li, A. T., & Xu, J. H. (2017). Preparation of structurally diverse chiral alcohols by engineering ketoreductase CgKR1. ACS Catalysis, 7, 7174–7181.

  29. Alipour, S. (2016). High yield 5-(hydroxymethyl) furfural production from biomass sugars under facile reaction conditions: a hybrid enzyme-and chemocatalytic technology. Green Chemistry, 18, 4990–4998.

  30. Wang, W., Ren, J., Li, H., Deng, A., & Sun, R. (2015). Direct transformation of xylan-type hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems.Bioresource Technology, 83, 188–194.

  31. Badr, A., Mohamed, B. A., Kim, C. S., Ellis, N., & Bi, X. (2016). Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresource Technology, 201, 121–132.

  32. Oveissi, F., & Fatehi, P. (2014). Production of modified bentonite via adsorbing lignocelluloses from spent liquor of NSSC process. Bioresource Technology, 174, 152–158.

  33. Ren, X., Awasthi, M. K., Wang, Q., Zhao, J., & Zhang, Z. (2018). New insight of tertiary-amine modified bentonite amendment on the nitrogentransformation and volatile fatty acids during the chicken manure composting. Bioresource Technology, 266, 524–531.

  34. Tan, W. S., & Ting, A. S. Y. (2014). Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution. Bioresource Technology, 160, 115–118.

    Article  CAS  Google Scholar 

  35. Huang, Y., Zhang, J., & Zhu, L. (2013). Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community. Bioresource Technology, 134, 17–23.

    Article  CAS  Google Scholar 

  36. He, Y. C., Jiang, C. X., Jiang, J. W., Di, J. H., Liu, F., Ding, Y., Qing, Q., & Ma, C. L. (2017). One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. Bioresource Technology, 238, 698–705.

  37. Gu, T., Wang, B., Zhang, Z., Wang, Z., & He, Y. (2019). Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl ( R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media.Process Biochemistry, 80, 112–118.

  38. He, Y. C., Xu, J. H., Su, J. H., & Zhou, L. (2010). Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Applied Biochemistry and Biotechnology, 160(5), 1428–1440.

  39. He, Y. C., Liu, F., Di, J. H., Ding, Y., Zhu, Z. Z., Wu, Y. Q., Chen, L., Wang, C., Xue, Y. F., Chong, G. G., & Ma, C. L. (2016). Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Industrial Crops and Products, 81, 129–138.

  40. Amao, Y., & Watanabe, T. (2009). Photochemical and enzymatic methanol synthesis from HCO by dehydrogenases using water-soluble zinc porphyrin in aqueous media. Applied Catalysis B: Environmental, 86, 109–113.

  41. Lou, W. Y., Wang, W., Smith, T. J., & Zong, M. H. (2009). Biocatalytic anti-Prelog stereoselective reduction of 4′-methoxyacetophenone to ( R)-1-(4- methoxyphenyl)ethanol with immobilized Trigonopsis variabilis AS2.1611 cells using an ionic liquid-containing medium. Green Chemistry, 11, 1377–1384.

  42. Ni, Y., & Xu, J. H. (2012). Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnology Advances, 30(6), 1279–1288.

    Article  CAS  Google Scholar 

  43. Zheng, G. W., & Xu, J. H. (2011). New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Current Opinion in Biotechnology, 22(6), 784–792.

    Article  CAS  Google Scholar 

  44. Zhou, J. Y., Wang, Y., Xu, G. C., Wu, L., Han, R. Z., Schwaneberg, U., Rao, Y., Zhao, Y. L., Zhou, J. H., & Ni, Y. (2018). Structural insight into enantioselective inversion of an alcohol dehydrogenase reveals a “polar gate” in stereorecognition of diaryl ketones. Journal of the American Chemical Society, 140(39), 12645–12654.

    Article  CAS  Google Scholar 

  45. Xu, G. C., Wang, Y., Tang, M. H., Zhou, J. Y., Zhao, J., Han, R. Z., & Ni, Y. (2018). Hydroclassified combinatorial saturation mutagenesis: reshaping substrate binding pockets of KpADH for enantioselective reduction of bulky-bulky etones. ACS Catalysis, 8, 8336–8345.

  46. Liu, Z. Q., Dong, S. C., Yin, H. H., Xue, Y. P., & Zheng, Y. G. (2017). Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system. Bioresource Technology, 229, 26–32.

    Article  CAS  Google Scholar 

  47. Louie, Y. L., Tang, J., Hell, A. M. L., & Bell, A. (2017). Kinetics of hydrogenation and hydrogenolysis of 2, 5-dimethylfuran over noble metals catalysts under mild conditions. Applied Catalysis B: Environmental, 202, 557–568.

  48. Tong, X. L., Liu, Z. H., Hu, J. H., & Liao, S. Y. (2016). Au-catalyzed oxidative condensation of renewable furfural and ethanol to produce furan-2-acrolein in the presence of molecular oxygen. Applied Catalysis A: General, 510, 196–203.

  49. Fulajtárova, K., Soták, T., Hronec, M., Vávra, I., Dobrocka, E., & Omastová, M. (2015). Aqueous phase hydrogenation of furfural to furfuryl alcohol over Pd–Cu catalysts. Applied Catalysis A: General, 502, 78–85.

  50. Di, J., Ma, C., Qian, J., Liao, X., Peng, B., & He, Y. (2018). Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acidcatalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. Bioresource Technology, 262, 52–58.

  51. He, Y. C., Ding, Y., Ma, C. L., Di, J. H., Jiang, C. X., & Li, A. T. (2017). One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chemistry, 19, 3844–3850.

Download references

Funding

This work was funded by the project of the National Natural Science Foundation of China (no. 21978072), Natural Science Foundation of Jiangsu Provincial Department of Education (no. 17KJD150001), the Open Project of State Key Laboratory of Biocatalysis and Enzyme Engineering, and the Key Laboratory of Fermentation Engineering (Ministry of Education),.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cai He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materias is updated

ESM 1

(DOCX 62.7kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, LZ., He, YC. Chemoenzymatic Synthesis of Furfuryl Alcohol from Biomass in Tandem Reaction System. Appl Biochem Biotechnol 190, 1289–1303 (2020). https://doi.org/10.1007/s12010-019-03154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03154-3

Keywords

Navigation