Skip to main content

Advertisement

Log in

Major Phytoconstituents of Prunus cerasoides Responsible for Antimicrobial and Antibiofilm Potential Against Some Reference Strains of Pathogenic Bacteria and Clinical Isolates of MRSA

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Prunus cerasoides is a traditionally well known for human health in various ways and particularly its bark is reported to possess high therapeutic applications in wound healing, foot and mouth disease, and indigestion etc. But there is scanty literature available on its systematic studies and phytoconstituents responsible for antimicrobial activity so the work is proposed. The main aim of this study is to reveal the phytoconstituents responsible for antimicrobial and antibiofilm action to demonstrate the effectiveness of such compounds by extrapolating the data using clinical isolates of pathogenic bacteria. In the present study, evaluation of P. cerasoides organic extract and phytoconstituents for their antimicrobial and antibiofilm potential against reference microbial strains was carried out. Antimicrobial potential was carried out using agar diffusion assay and biosafety of organic extract and its phytoconstituents was evaluated by MTT and Ames mutagenicity assay. Ethyl acetate was found to be the best organic extractant, where Klebsiella pneumoniae 1 (39.5 mm) and Staphylococcus aureus (22.5 mm) were the most sensitive microorganisms, respectively. Among the major phytoconstituents, flavonoids (14.5–33.5mm), diterpenes (14–28.7 mm), and cardiac glycosides (11.5–20.5mm) exhibited broad-spectrum antimicrobial activity. Ethyl acetate extract showed better potency with lowest minimum inhibitory concentration (0.1–10 mg/ml) than the most active partially purified phytoconstituents (0.5–10 mg/ml). Total activity potency for ethyl acetate extract ranged from 26.66–2666 ml/g and for flavonoids, it was 41–410 ml/g, thus considered as highly potent and bactericidal in nature as evidenced from VCC study. The major bioactive compounds were found to be biosafe. The most active phytoconstituents were found to have antibiofilm potential, as well as effective against clinical isolates of MRSA, thus, the findings indicate that P. cerasoides stem bark could be a potential source for development of broad-spectrum drugs against multidrug-resistant bugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Westh, H., Zinn, C. S., Rosdahl, V. T., & Group, S.S. (2004). An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microbial Drug Resistance, 10, 169–176.

    Article  CAS  PubMed  Google Scholar 

  2. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  3. Branda, S. S., Vik, A., Friedman, L., & Kolter, R. (2005). Biofilms: the matrix revisited. Trends in Microbiology, 13(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  4. Hall-Stoodley, L., Hu, F. Z., Gieseke, A., & Nistico, L. (2006). Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. Journal of the American Medical Association, 296(2), 202–211.

    Article  CAS  PubMed  Google Scholar 

  5. Francesca, S.L. (2011) Anti-microbial properties of Scutellaria baicalensis and Coptis chinensis, two traditional Chinese medicines. Bioscience Horizons 2011; 1; 119–127.

  6. Shingare, R. P., Nanekar, S. V., Thawale, P. R., Karthik, R., & Juwarkar, A. A. (2017). Comparative study on removal of enteric pathogens from domestic wastewater using Typha latifolia and Cyperus rotundus along with different substrates. International Journal of Phytoremediation, 19(10), 899–908.

    Article  CAS  PubMed  Google Scholar 

  7. Rani, P., & Khullar, N. (2004). Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phytotherapy Research, 18(8), 670–673.

    Article  PubMed  Google Scholar 

  8. Rios, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1–2), 80–84.

    Article  CAS  PubMed  Google Scholar 

  9. Weimann, C., & Heinrich, M. (1997). Indigenous medicinal plants in Mexico: the example of the Nahua (Sierra de Zongolica). Pharmaceutical Biology, 110(1), 62–72.

    Google Scholar 

  10. Atindehou, K. K., Kone, M., Tenneaux, C., Traore, D., Hosterrman, K., & Doss, M. (2002). Evaluation of the antimicrobial potential of medicinal plants from the Ivory Coast. Phytotherapy Research, 16(5), 497–502.

    Article  PubMed  Google Scholar 

  11. Muthu, M., Gopal, J., Min, S. X., & Chun, S. (2016). Green tea versus traditional Korean teas: antibacterial/antifungal or both? Applied Biochemistry and Biotechnology, 180(4), 780–790.

    Article  CAS  PubMed  Google Scholar 

  12. Rasooli, I., Shayegh, S., Taghizadeh, M., & Astaneh, S. D. A. (2008). Phytotherapeutic prevention of dental biofilm formation. Phytotherapy Research, 22(9), 1162–1167.

    Article  PubMed  Google Scholar 

  13. Joseph, N., Anjum, N., & Tripathi, Y. C. (2016). Phytochemical screening and evaluation of polyphenols, flavonoids and antioxidant activity of Prunus cerasoides D. Don leaves. Journal of Pharmaceutical Research , 10, 502–508.

    CAS  Google Scholar 

  14. Arora, D. S., & Mahajan, H. (2017). In vitro evaluation and statistical optimization of antimicrobial activity of Prunus cerasoides stem bark. Applied Biochemistry and Biotechnology, 184(3), 821–837.

    Article  CAS  PubMed  Google Scholar 

  15. Köck, R., Becker, K., Cookson, B., van Gemert-Pijnen, J. E., Harbarth, S., Kluytmans, J. A., Mielke, M., Peters, G., Skov, R. L., Struelens, M. J., & Tacconelli, E. (2010). Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Eurosurveillance, 15(41), 19688.

    Article  PubMed  Google Scholar 

  16. Chatterjee, M., Anju, C. P., Biswas, L., Kumar, V. A., Mohan, C. G., & Biswas, R. (2016). Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. International Journal of Medical Microbiology, 306(1), 48–58.

    Article  CAS  PubMed  Google Scholar 

  17. Arora, D. S., & Sood, H. (2017). In vitro antimicrobial potential of extracts and phytoconstituents from Gymnema sylvestre R.Br. leaves and their biosafety evaluation. AMB Express, 7(1), –115.

  18. Onsare, J. G., & Arora, D. S. (2015). Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Journal of Applied Microbiology, 118(2), 313–325.

    Article  CAS  PubMed  Google Scholar 

  19. Arora, D. S., & Onsare, J. G. (2014a). Antimicrobial potential of Moringa oleifera seed coat and its bioactive phytoconstituents. Korean Journal of Microbiology and Biotechnology, 42(2), 152–161.

    Article  CAS  Google Scholar 

  20. Suzuki, H., Okubo, L., Yamazaki, S., Suzuki, K., Mitsuya, H., & Toda, S. (1989). Inhibition of the infectivity and cytopathic effect of the human immunodeficiency virus by water soluble lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Biochemical and Biophysical Research Communications, 160(1), 367–373.

    Article  CAS  PubMed  Google Scholar 

  21. Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 455(1), 29–60.

    Article  CAS  PubMed  Google Scholar 

  22. Ong, T. W., Hong, W. Z., Stewart, J. D., & Brockman, H. E. (1986). Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures. Mutation Research Letters, 173(2), 111–115.

    Article  CAS  Google Scholar 

  23. Negi, P., Jayaprakasha, G., & Jena, B. S. (2003). Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chemistry, 80(3), 393–397.

    Article  CAS  Google Scholar 

  24. Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stepanovic, S., Vukovi, D., Hola, V., Di Bonaventura, G., Djukić, S., Cirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS, 115(8), 891–899.

    Article  PubMed  Google Scholar 

  26. Kumar, C. G., & Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42(1), 9–27.

    Article  CAS  PubMed  Google Scholar 

  27. Jadhav, S., Shah, R., Bhave, M., & Palombo, A. E. (2013). Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control, 29(1), 125–130.

    Article  CAS  Google Scholar 

  28. Djordjevic, D., Wiedmann, M., & McLandsborough, L. A. (2002). Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Applied and Environmental Microbiology, 68(6), 2950–2958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dadawala, A. I., Chauhan, H. C., Patel, S. S., Singh, K., Rathod, P. H., & Shah, N. M. (2010). Assessment of Escherichia coli isolates for in vitro biofilm production. Veterinary World, 3(8), 364.

    Google Scholar 

  30. Jin, Y., Yip, H. K., Samaranayake, Y. H., Yau, J. Y., & Samaranayake, L. P. (2003). Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. Journal of Clinical Microbiology, 41(7), 2961–2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith, K., & Hunter, L. S. (2008). Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. Journal of Medical Microbiology, 57(8), 966–973.

    Article  CAS  PubMed  Google Scholar 

  32. Baron, E.J.O., Peterson, L.R., & Finegold, S. M. (1994). Baily and Scott’s diagnostic microbiology, pp. 168–176, 9th. edn, Mosbey, Toronto.

  33. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55–63.

    Article  CAS  PubMed  Google Scholar 

  34. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pareke, J., & Chanda, S. (2007). In vitro screening of antibacterial activity of aqueous and alcoholic extracts of various Indian plant species against selected pathogens from Enterobacteriaceae. African Journal of Microbiology Research, 1, 92–99.

    Google Scholar 

  36. Linthoingambi, W., & Singh, M. S. (2013). Antimicrobial activities of different solvent extracts of Tithonia diversifolia (Hemsely) A. Asian Journal of Plant Science and Research, 3(5), 50–54.

    Google Scholar 

  37. Arora, D. S., & Onsare, J. G. (2014b). In vitro antimicrobial potential, biosafety and bioactive phytoconstituents of Moringa oleifera stem bark. World Journal of Pharmaceutical Research, 3, 2772–2788.

    Google Scholar 

  38. Alagesaboopathi, C. (2013). Evaluation of antibacterial properties of leaf and stem extracts of Andrographis elongata T. And.–an endemic medicinal plant of India. International Journal of Pharma and Bio Sciences, 4(2), 503–510.

    Google Scholar 

  39. Cushnie, T. P. T., & Lamb, J. A. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.

    Article  CAS  PubMed  Google Scholar 

  40. Vikram, A., Jayaprakasha, G. K., Jesudhasan, P. R., Pillai, S. D., & Patil, B. S. (2010). Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 109(2), 515–527.

    CAS  PubMed  Google Scholar 

  41. Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emergent Infectious Disease, 8(9), 881–890.

    Article  Google Scholar 

  42. Lee, J. H., Park, J. H., Cho, H. S., Joo, S. W., Cho, M. H., & Lee, J. (2013). Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling, 29(5), 491–499.

    Article  CAS  PubMed  Google Scholar 

  43. Frank, J. F., & Koffi, R. A. (1990). Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. Journal of Food Protection, 53(7), 550–554.

    Article  PubMed  Google Scholar 

  44. Krysinski, E. P., Brown, L. J., & Marchisello, T. J. (1992). Effect of cleaners and sanitizers on Listeria monocytogenes attached to product contact surfaces. Journal of Food Protection, 55, 246–251.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The support offered to Himadri in the form of fellowship under university with potential for excellence (UPE) scheme of the UGC New Delhi assisted to the university.

Author information

Authors and Affiliations

Authors

Contributions

The practical work was carried out by HM. The data analysis and preparation of manuscript were equally contributed by both the authors DSA and HM.

Corresponding author

Correspondence to Daljit Singh Arora.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D.S., Mahajan, H. Major Phytoconstituents of Prunus cerasoides Responsible for Antimicrobial and Antibiofilm Potential Against Some Reference Strains of Pathogenic Bacteria and Clinical Isolates of MRSA. Appl Biochem Biotechnol 188, 1185–1204 (2019). https://doi.org/10.1007/s12010-019-02985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02985-4

Keywords

Navigation