Skip to main content
Log in

Microalgal Cultivation and Nutrient Removal from Digested Piggery Wastewater in a Thin-film Flat Plate Photobioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work investigated the cultivation of Chlorella vulgaris in a thin-film flat plate photobioreactor under outdoor conditions and using digested piggery wastewater as the culture medium. The algal cells were able to adapt quickly to the wastewater and outdoor conditions. A specific growth rate of 0.12 day−1 was obtained in the exponential growth phase, which was slightly higher than that during indoor cultivation using artificial culture medium. Results showed that Chlorella vulgaris effectively removed TN, TP, and COD by 72.48%, 86.93%, and 85.94%. Due to the difference in culture conditions and phosphorus availability, the biomass from outdoor cultivation contained higher lipid content and more unsaturated fatty acids compared to indoor cultures, while the amino acid composition was unaffected. Results of metallic element assay indicated that the biomass cultured with wastewater conformed to the standards required for animal feed additive production. The overall cost of the biomass production in the thin-film flat plate photobioreactor (32.94 US$/kg) was estimated to be 4.67 times lower than that of indoor cultivation (154.04 US$/kg). Together, these results provide a basis for large-scale outdoor production of microalgae and wastewater bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  2. Abodeely, J. M., Coleman, A. M., Stevens, D. M., Ray, A. E., Cafferty, K. G., & Newby, D. T. (2014). Assessment of algal farm designs using a dynamic modular approach. Algal Research-Biomass Biofuels and Bioproducts, 5, 264–273.

    Google Scholar 

  3. Zhou, W. G., Chen, P., Min, M., Ma, X. C., Wang, J. H., Griffith, R., Hussain, F., Peng, P., Xie, Q. L., Li, Y., Shi, J., Meng, J. Z., & Ruan, R. (2014). Environment-enhancing algal biofuel production using wastewaters. Renewable & Sustainable Energy Reviews, 36, 256–269.

    Article  Google Scholar 

  4. Cai, T., Park, S. Y., & Li, Y. B. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable & Sustainable Energy Reviews, 19, 360–369.

    Article  CAS  Google Scholar 

  5. Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., Chen, P., Liu, Y. H., & Ruan, R. (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243, 417–425.

    Article  CAS  PubMed  Google Scholar 

  6. Jebali, A., Acien, F. G., Sayadi, S., & Molina-Grima, E. (2018). Utilization of centrate from urban wastewater plants for the production of Scenedesmus sp. in a raceway-simulating reactor. Journal of Environmental Management, 211, 112–124.

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez-Linares, L. C., Barajas, C. G., Paramo, E. D., & Corona, J. A. B. (2017). Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresource Technology, 244(Pt 1), 400–406.

    Article  CAS  PubMed  Google Scholar 

  8. Avagyan, A. B. (2011). Water global recourse management through the use of microalgae addressed to sustainable development. Clean Technologies and Environmental Policy, 13(3), 431–445.

    Article  Google Scholar 

  9. Ebrahimian, A., Kariminia, H. R., & Vosoughi, M. (2014). Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy, 71, 502–508.

    Article  CAS  Google Scholar 

  10. Mehrabadi, A., Craggs, R., & Farid, M. M. (2015). Wastewater treatment high rate algal ponds (WWT-HRAP) for low-cost biofuel production. Bioresource Technology, 184, 202–214.

    Article  CAS  PubMed  Google Scholar 

  11. Morales-Amaral, M. D., Gomez-Serrano, C., Acien, F. G., Fernandez-Sevilla, J. M., & Molina-Grima, E. (2015). Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Research-Biomass Biofuels and Bioproducts, 12, 99–108.

    Google Scholar 

  12. Kim, H. C., Choi, W. J., Ryu, J. H., Maeng, S. K., Kim, H. S., Lee, B. C., & Song, K. G. (2014). Optimizing cultivation strategies for robust algal growth and consequent removal of inorganic nutrients in pretreated livestock effluent. Applied Biochemistry and Biotechnology, 174(4), 1668–1682.

    Article  CAS  PubMed  Google Scholar 

  13. Norsker, N. H., Barbosa, M. J., Vermue, M. H., & Wijffels, R. H. (2011). Microalgal production - a close look at the economics. Biotechnology Advances, 29(1), 24–27.

    Article  CAS  PubMed  Google Scholar 

  14. Becker, E. W. (1994). Microalgae: biotechnology and microbiology. Quarterly Review of Biology, p56–p61.

  15. SEPE. (2002). Water and wastewater analyzing methods. Beijing: China Environmental Science Press.

    Google Scholar 

  16. Tan, X. B., Zhao, X. C., Zhang, Y. L., Zhou, Y. Y., Yang, L. B., & Zhang, W. W. (2018). Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresource Technology, 247, 784–793.

    Article  CAS  PubMed  Google Scholar 

  17. Sun, Z., Xue, S., Yan, C., Cong, W., & Kong, D. (2016). Utilisation of tris(hydroxymethyl)aminomethane as a gas carrier in microalgal cultivation to enhance CO2 utilisation and biomass production. RSC Advances, 6(4), 2703–2711.

    Article  CAS  Google Scholar 

  18. Safi, Charton, Pignolet, Silvestre and Vaca-Garcia. (2013) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of Applied Phycology, 25, 523–529, 2.

  19. Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11–36.

    Article  CAS  PubMed  Google Scholar 

  20. Collos, Y., & Harrison, P. J. (2014). Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine Pollution Bulletin, 80(1-2), 8–23.

    Article  CAS  PubMed  Google Scholar 

  21. Shih, Y. J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y. H., & Lu, M. C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466–473.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, T. H., Lee, Y., Han, S. H., & Hwang, S. J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75–80.

    Article  CAS  PubMed  Google Scholar 

  23. Michelon, W., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Prandini, J. M., & Soares, H. M. (2016). Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochemistry and Biotechnology, 178(7), 1407–1419.

    Article  CAS  PubMed  Google Scholar 

  24. Kurade, M. B., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2016). Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research-Biomass Biofuels and Bioproducts, 20, 126–134.

    Google Scholar 

  25. Chu, F. F., Chu, P. N., Shen, X. F., Lam, P. K. S., & Zeng, R. J. (2014). Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresource Technology, 152, 241–246.

    Article  CAS  PubMed  Google Scholar 

  26. Li, Y. C., Chen, Y. F., Chen, P., Min, M., Zhou, W. G., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, R. M., Tian, Y., Xue, S. Z., Zhang, D. M., Zhang, Q. H., Wu, X., Kong, D. Z., & Cong, W. (2016). Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. Journal of Chemical Technology and Biotechnology, 91(5), 1387–1396.

    Article  CAS  Google Scholar 

  28. Salama, E. S., Kurade, M. B., Abou-Shanab, R. A. I., El-Dalatony, M. M., Yang, I. S., Min, B., & Jeon, B. H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable & Sustainable Energy Reviews, 79, 1189–1211.

    Article  CAS  Google Scholar 

  29. Gonzalez-Fernandez, C., Molinuevo-Salces, B., & Garcia-Gonzalez, M. C. (2011). Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresource Technology, 102(2), 960–966.

    Article  CAS  PubMed  Google Scholar 

  30. Demirbas, M. F. (2011). Biofuels from algae for sustainable development. Applied Energy, 88(10), 3473–3480.

    Article  CAS  Google Scholar 

  31. Klyachko-Gurvich, G., Doucha, J., Kopetskii, J., Semenenko, V., & Tsoglin, L. (2010). Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiologia Plantarum, 107, 240–249.

    Article  Google Scholar 

  32. Zili, F., Mezhoud, N., Trabelsi, L., Chreif, I., & Ben Ouada, H. (2015). Fatty acid composition of the thermophilic Gloeocapsa gelatinosa under different combinations of temperature, light intensity, and NaNO3 concentration. Journal of Applied Phycology, 27(1), 97–107.

    Article  CAS  Google Scholar 

  33. Zhu, L. D., Wang, Z. M., Takala, J., Hiltunen, E., Qin, L., Xu, Z. B., Qin, X. X., & Yuan, Z. H. (2013). Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresource Technology, 137, 318–325.

    Article  CAS  PubMed  Google Scholar 

  34. Zielinska, A., Chojnacka, K., & Labuda, M. (2011). Technology for production of mineral feed additives based on microalgal biomass. Przemysl Chemiczny, 90, 1092–1095.

    CAS  Google Scholar 

  35. Li, Y., Xiao, G. Q., Mangott, A., Kent, M., & Pirozzi, I. (2016). Nutrient efficacy of microalgae as aquafeed additives for the adult black tiger prawn, Penaeus monodon. Aquaculture Research, 47(11), 3625–3635.

    Article  CAS  Google Scholar 

  36. Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Chowdhury, M. A. K., Parsaeimehr, A., Liang, Y. M., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1), 197–213.

    Article  Google Scholar 

  37. Xia, L., Song, S. X., & Hu, C. X. (2016). High temperature enhances lipid accumulation in nitrogen-deprived Scenedesmus obtusus XJ-15. Journal of Applied Phycology, 28(2), 831–837.

    Article  CAS  Google Scholar 

  38. Wang, S. K., Hu, Y. R., Wang, F., Stiles, A. R., & Liu, C. Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.

    Article  CAS  PubMed  Google Scholar 

  39. Duong, V. T., Ahmed, F., Thomas-Hall, S. R., Quigley, S., Nowak, E., & Schenk, P. M. (2015). High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel. Frontiers in Bioengineering and Biotechnology, 3, 53–60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ogbonna, J. C., Masui, H., & Tanaka, H. (1997). Sequential heterotrophic/autotrophic cultivation – an efficient method of producing Chlorella biomass for health food and animal feed. Journal of Applied Phycology, 9(4), 359–366.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by a grant from the Natural Science Foundation Project Fund of Shandong Province (Grant No. ZR2016BQ45) and an Innovation Team Project for Modern Agricultural Industrial Technology Systems of Shandong Province (Grant No. SDAIT-11-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-qin Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

E-copies of the supplementary data related to this work can be found in the on-line version of the paper.

ESM 1

(DOCX 4410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Zl., Sun, Lq. & Chen, Gz. Microalgal Cultivation and Nutrient Removal from Digested Piggery Wastewater in a Thin-film Flat Plate Photobioreactor. Appl Biochem Biotechnol 187, 1488–1501 (2019). https://doi.org/10.1007/s12010-018-2889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2889-x

Keywords

Navigation